Skip to main content
Log in

Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The surface plasmon polariton (SPP) coupling and enhancement in silver nanowire–nanoantenna structure is proposed and simulated by using finite difference time domain method. The results demonstrate that three-arm antenna can effectively enhance the coupling efficiency at the incident end and the SPP field intensity at the emission end. The enhancement factor, which is defined as the ratio of the SPP field intensity at the emission end with and without the three-arm antenna, for the various antenna arm lengths and incident wavelengths under different incident angles are calculated. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Liu ZW, Wang Y, Yao J, Lee H, Srituravanich W, Zhang X (2008) Broad band two-dimensional manipulation of surface plasmons. Nano Lett 9:462–466

    Article  Google Scholar 

  3. Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale Bowtie apertures. Nano Lett 6:361–364

    Article  CAS  Google Scholar 

  4. Dionne JA, Diest K, Swealock LA, Atwater HA (2009) Plasmostor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett 9:897–902

    Article  CAS  Google Scholar 

  5. MacDonald KF, Samson ZL, Stockman ML, Zheludev NL (2009) Ultrafast active plasmonics. Nature Photonics 3:55–58

    Article  CAS  Google Scholar 

  6. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1687

    Article  CAS  Google Scholar 

  7. Righini M, Zelenina AS, Girard C, Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys 3:477–480

    Article  CAS  Google Scholar 

  8. Fang ZY, Lin F, Huang S, Song WT, Zhu X (2009) Focusing surface plasmon polariton trapping of colloidal particles. Appl Phys Lett 94:063306

    Article  Google Scholar 

  9. Ozbay E (2006) Nanoscale dimensions plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  10. Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401

    Article  Google Scholar 

  11. Barnes W, Dereux LA, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  12. Fang ZY, Zhang XJ, Liu D, Zhu X (2008) Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. Appl Phys Lett 93:073306

    Article  Google Scholar 

  13. Passinger S, Seidel A, Ohrt C, Reinhardt C, Stepanov A, Kiyan R, Chichkov BN (2008) Novel efficient design of Y-splitter for surface plasmon polariton applications. Opt Express 16:14369–14379

    Article  Google Scholar 

  14. Fang ZY, Huang S, Lin F, Zhu X (2009) Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Opt Express 17:20327–20332

    Article  CAS  Google Scholar 

  15. Fang ZY, Dai T, Fu Q, Zhang B, Zhu X (2009) Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal. J Microscopy 235:138–143

    Article  CAS  Google Scholar 

  16. Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104:6095–6908

    Article  CAS  Google Scholar 

  17. Pyayt AL, Wiley B, Xia YN, Chen AT, Dalton L (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotechnology 3:660–665

    Article  CAS  Google Scholar 

  18. Muhlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607

    Article  CAS  Google Scholar 

  19. Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402

    Article  CAS  Google Scholar 

  20. Fromm DP, Sundaramurthy A, Schuck P, Kino GS, Moerner WE (2004) Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett 4:957–961

    Article  CAS  Google Scholar 

  21. Greffet JJ (2005) Nanoantennas for light emission. Science 308:1561–1562

    Article  CAS  Google Scholar 

  22. Zayatsa AV, Smolyaninovb II, Maradudinc AA (2005) Nano-optics of surface plasmon polaritons. Physics Reports 408:131–314

    Article  Google Scholar 

  23. Palik ED (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  24. Kunz KS, Luebbers RJ (2003) The finite difference time domain method for electromagnetics. CRC, Boca Raton

    Google Scholar 

  25. Jackson JD (1999) Classical electrodynamics, 3rd edn. Academic, New York

    Google Scholar 

  26. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95:257403

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by National Science Foundation of China (10574002), National Basic Research Program of China (973 Program; 2007CB936800), and Undergraduate Scientific Training Program Funding of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Z., Lu, Y., Fan, L. et al. Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure. Plasmonics 5, 57–62 (2010). https://doi.org/10.1007/s11468-009-9115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9115-1

Keywords

Navigation