Skip to main content
Log in

Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this review, we highlight our recent achievements in using colloidal gold nanoparticles as building blocks for fabrication of anisotropic and multicomponent nanoparticles (e.g., nanoshells, semiconductor nanocrystals, and gold nanorods). The tunable optical properties of these nanoparticles are well suited for various biomedical and biophotonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Prasad PN (2004) Nanophotonics. Wiley, New York

    Book  Google Scholar 

  2. Yin Y, Alivisatos AP (2005) Nature 437:664–670 doi:10.1038/nature04165

    Article  CAS  Google Scholar 

  3. Alivisatos P (2004) Nat Biotechnol 22:47–52 doi:10.1038/nbt927

    Article  CAS  Google Scholar 

  4. Prasad PN (2004) Biophotonics. Wiley, New York

    Google Scholar 

  5. Kim S, Bawendi MG (2003) J Am Chem Soc 125:14652–14653 doi:10.1021/ja0368094

    Article  CAS  Google Scholar 

  6. Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) J Am Chem Soc 128:2526–2527 doi:10.1021/ja0579816

    Article  CAS  Google Scholar 

  7. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX et al (2006) Nano Lett 6:669–676 doi:10.1021/nl052405t

    Article  CAS  Google Scholar 

  8. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci U S A 99:12617–12621 doi:10.1073/pnas.152463399

    Article  CAS  Google Scholar 

  9. Bruchez M Jr., Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016 doi:10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  10. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762 doi:10.1126/science.1077194

    Article  CAS  Google Scholar 

  11. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Science 307:538–544 doi:10.1126/science.1104274

    Article  CAS  Google Scholar 

  12. Chan WC, Nie S (1998) Science 281:2016–2018 doi:10.1126/science.281.5385.2016

    Article  CAS  Google Scholar 

  13. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW et al (2003) Science 300:1434–1436 doi:10.1126/science.1083780

    Article  CAS  Google Scholar 

  14. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) Nat Biotechnol 22:969–976 doi:10.1038/nbt994

    Article  CAS  Google Scholar 

  15. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Nat Biotechnol 22:93–97 doi:10.1038/nbt920

    Article  CAS  Google Scholar 

  16. Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B et al (2007) Nat Biotechnol 25:1165–1170 doi:10.1038/nbt1340

    Article  CAS  Google Scholar 

  17. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) J Am Chem Soc 127:1364–11371 doi:10.1021/ja051455x

    Article  CAS  Google Scholar 

  18. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Nano Lett 5:09–711 doi:10.1021/nl050127s

    Article  CAS  Google Scholar 

  19. Levin CS, Bishnoi SW, Grady NK, Halas NJ (2006) Anal Chem 78:277–3281 doi:10.1021/ac060041z

    Google Scholar 

  20. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Nano Lett 7:929–1934 doi:10.1021/nl070610y

    Article  CAS  Google Scholar 

  21. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:115–2120 doi:10.1021/ja057254a

    Google Scholar 

  22. El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:29–834 doi:10.1021/nl050074e

    Article  CAS  Google Scholar 

  23. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A et al (2000) Nature 404:59–61 doi:10.1038/35003535

    Article  CAS  Google Scholar 

  24. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Nat Mater 2:82–385 doi:10.1038/nmat902

    Article  CAS  Google Scholar 

  25. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:025–1102 doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  26. Yong KT, Sahoo Y, Zeng H, Swihart MT, Minter JR, Prasad PN (2007) Chem Mater 19:108–4110 doi:10.1021/cm0709774

    Article  CAS  Google Scholar 

  27. Mokari T, Banin U (2003) Chem Mater 15:955–3960 doi:10.1021/cm034173±

    Article  CAS  Google Scholar 

  28. Panda AB, Glaspell G, El-Shall MS (2006) J Am Chem Soc 128:790–2791 doi:10.1021/ja058148b

    Article  CAS  Google Scholar 

  29. Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM et al (2007) Nano Lett 7:61–765 doi:10.1021/nl063031m

    Article  CAS  Google Scholar 

  30. Yong K-T, Roy I, Pudavar HE, Bergey EJ, Tramposch KM, Swihart MT et al (2008) Adv Mater 20:1412–1417

    Article  CAS  Google Scholar 

  31. Fu A, Gu W, Boussert B, Koski K, Gerion D, Manna L et al (2007) Nano Lett 7:79–182 doi:10.1021/nl0626434

    Article  CAS  Google Scholar 

  32. Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R et al (2005) J Am Chem Soc 127:2484–12485 doi:10.1021/ja053761g

    Google Scholar 

  33. Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH et al (2007) Anal Chem 79:291–3297 doi:10.1021/ac061808q

    Article  CAS  Google Scholar 

  34. Shi Kam W, O'Connell M, Wisdom JA, Dai H (2005) Proc Natl Acad Sci U S A 102:1600–11605 doi:10.1073/pnas.0502680102

    Article  CAS  Google Scholar 

  35. Ghosh SK, Pal T (2007) Chem Rev 107:4797–4862 doi:10.1021/cr0680282

    Article  CAS  Google Scholar 

  36. Daniel MC, Astruc D (2004) Chem Rev 104:293–346 doi:10.1021/cr030698

    Article  CAS  Google Scholar 

  37. Murphy CJ (2002) Science 298:2139–2141 doi:10.1126/science.1080007

    Article  CAS  Google Scholar 

  38. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677 doi:10.1021/jp026731y

    Article  CAS  Google Scholar 

  39. Yang Y, Shi J, Kawamura G, Nogami M (2008) Scr Mater 58:862–865 doi:10.1016/j.scriptamat.2008.01.017

    Article  CAS  Google Scholar 

  40. Lytton-Jean AKR, Mirkin CA (2005) J Am Chem Soc 127:12754–12755 doi:10.1021/ja052255o

    Article  CAS  Google Scholar 

  41. Demers LM, Ostblom M, Zhang H, Jang NH, Liedberg B, Mirkin CA (2002) J Am Chem Soc 124:11248–11249 doi:10.1021/ja0265355

    Article  CAS  Google Scholar 

  42. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Nano Lett 7:3818–3821 doi:10.1021/nl072471q

    Article  CAS  Google Scholar 

  43. Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL (2002) Langmuir 18:6666–6670 doi:10.1021/la0202428

    Article  CAS  Google Scholar 

  44. Nie S, Emory SR (1997) Science 275:1102–1106 doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  45. Liu Y, Male KB, Bouvrette P, Luong JHT (2003) Chem Mater 15:4172–4180 doi:10.1021/cm0342041

    Article  CAS  Google Scholar 

  46. Chen D-H, Chen C-J (2002) J Mater Chem 12:1557–1562 doi:10.1039/b110749f

    Article  CAS  Google Scholar 

  47. Velikov KP, Zegers GE, van Blaaderen A (2003) Langmuir 19:1384–1389 doi:10.1021/la026610p

    Article  CAS  Google Scholar 

  48. Pastoriza-Santos I, Liz-Marzan LM (2002) Langmuir 18:2888–2894 doi:10.1021/la015578g

    Article  CAS  Google Scholar 

  49. Zhao X, Mai Z, Kang X, Dai Z, Zou X (2008) Electrochim Acta 53:4732–4739 doi:10.1016/j.electacta.2008.02.007

    Article  CAS  Google Scholar 

  50. Ma Z, Han H (2008) Colloids Surf A Physicochem Eng Asp 317:229–233 doi:10.1016/j.colsurfa.2007.10.018

    Article  CAS  Google Scholar 

  51. Wang W, Chen X, Efrima S (1999) J Phys Chem B 103:7238–7246 doi:10.1021/jp991101q

    Article  CAS  Google Scholar 

  52. Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y (2001) Langmuir 17:3795–3799 doi:10.1021/la001361v

    Article  CAS  Google Scholar 

  53. Neiman B, Grushka E, Lev O (2001) Anal Chem 73:5220–5227 doi:10.1021/ac0104375

    Article  CAS  Google Scholar 

  54. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Langmuir 16:6396–6399 doi:10.1021/la991507u

    Article  CAS  Google Scholar 

  55. Pastoriza-Santos I, Liz-Marzan LM (1999) Langmuir 15:948–951 doi:10.1021/la980984u

    Article  CAS  Google Scholar 

  56. Tan Y, Jiang L, Li Y, Zhu DJ (2002) Phys Chem B 106:3131–3138 doi:10.1021/jp012668l

    Article  CAS  Google Scholar 

  57. Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Chem Mater 13:1674–1681 doi:10.1021/cm000416b

    Article  CAS  Google Scholar 

  58. Hall SR, Davis SA, Mann S (2000) Langmuir 16:1454–1456 doi:10.1021/la9909143

    Article  CAS  Google Scholar 

  59. Pham T, Jackson JB, Halas NJ, Lee TR (2002) Langmuir 18:4915–4920 doi:10.1021/la015561y

    Article  CAS  Google Scholar 

  60. Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957–1962 doi:10.1021/cm020732l

    Article  CAS  Google Scholar 

  61. Nikoobakht B, El-Sayed MA (2001) Langmuir 17:6368–6374 doi:10.1021/la010530o

    Article  CAS  Google Scholar 

  62. Leff DV, Brandt L, Heath JR (1996) Langmuir 12:4723–4730 doi:10.1021/la960445u

    Article  CAS  Google Scholar 

  63. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Nano Lett 4:2355–2359 doi:10.1021/nl048610a

    Article  CAS  Google Scholar 

  64. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D et al (2007) Nano Lett 7:3759–3765 doi:10.1021/nl072209h

    Article  CAS  Google Scholar 

  65. Yong K-T, Sahoo Y, Swihart MT, Prasad PN (2006) Colloids Surf A Physicochem Eng Asp 290:89–105 doi:10.1016/j.colsurfa.2006.05.004

    Article  CAS  Google Scholar 

  66. Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Langmuir 21:1610–1617 doi:10.1021/la047628y

    Article  CAS  Google Scholar 

  67. Gerion D, Chen F, Kannan B, Fu A, Parak WJ, Chen DJ et al (2003) Anal Chem 75:4766–4772 doi:10.1021/ac034482j

    Article  CAS  Google Scholar 

  68. Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL et al (2003) Nano Lett 3:1677–1681 doi:10.1021/nl034815s

    Article  CAS  Google Scholar 

  69. Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004) J Phys Chem B 108:18826–18831 doi:10.1021/jp046481g

    Article  CAS  Google Scholar 

  70. Murray CB, Kagan CR, Bawendi MG (1995) Science 270:1335–1338 doi:10.1126/science.270.5240.1335

    Article  CAS  Google Scholar 

  71. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S et al (2001) J Phys Chem B 105:8861–8871 doi:10.1021/jp0105488

    Article  CAS  Google Scholar 

  72. Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) J Am Chem Soc 126:10832–10833 doi:10.1021/ja046747x

    Article  CAS  Google Scholar 

  73. Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH et al (2007) J Phys Chem B 111:6969–6972 doi:10.1021/jp070620n

    Article  CAS  Google Scholar 

  74. Jiang XC, Xiong QH, Nam S, Qian F, Li Y, Lieber CM (2007) Nano Lett 7:3214–3218 doi:10.1021/nl072024a

    Article  CAS  Google Scholar 

  75. Javey A, Nam S, Friedman RS, Yan H, Lieber CM (2007) Nano Lett 7:773–777 doi:10.1021/nl063056l

    Article  CAS  Google Scholar 

  76. Barrelet CJ, Bao JM, Loncar M, Park HG, Capasso F, Lieber CM (2006) Nano Lett 6:11–15 doi:10.1021/nl0522983

    Article  CAS  Google Scholar 

  77. Agarwal R, Barrelet CJ, Lieber CM (2005) Nano Lett 5:917–920 doi:10.1021/nl050440u

    Article  CAS  Google Scholar 

  78. Qian F, Li Y, Gradecak S, Wang DL, Barrelet CJ, Lieber CM (2004) Nano Lett 4:1975–1979 doi:10.1021/nl0487774

    Article  CAS  Google Scholar 

  79. Liu J, Fei P, Zhou J, Tummala R, Wang ZL (2008) Appl Phys Lett 92:173105

    Article  CAS  Google Scholar 

  80. Qin Y, Wang XD, Wang ZL (2008) Nature 451:809–U5 doi:10.1038/nature06601

    Article  CAS  Google Scholar 

  81. Lin YF, Song J, Ding Y, Lu SY, Wang ZL (2008) Appl Phys Lett 92:022105

    Article  CAS  Google Scholar 

  82. Wang XD, Liu J, Song JH, Wang ZL (2007) Nano Lett 7:2475–2479 doi:10.1021/nl0712567

    Article  CAS  Google Scholar 

  83. Zou BS, Liu RB, Wang FF, Pan AL, Cao L, Wang ZL (2006) J Phys Chem B 110:12865–12873 doi:10.1021/jp061357d

    Article  CAS  Google Scholar 

  84. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) J Am Chem Soc 129:7228–7229 doi:10.1021/ja071456k

    Article  CAS  Google Scholar 

  85. Morales AM, Lieber CM (1998) Science 279:208–211 doi:10.1126/science.279.5348.208

    Article  CAS  Google Scholar 

  86. Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE (1995) Science 270:1791–1794 doi:10.1126/science.270.5243.1791

    Article  CAS  Google Scholar 

  87. Peng ZA, Peng X (2001) J Am Chem Soc 123:183–184 doi:10.1021/ja003633m

    Article  CAS  Google Scholar 

  88. Xie R, Battaglia D, Peng X (2007) J Am Chem Soc 129:15432–15433 doi:10.1021/ja076363h

    Article  CAS  Google Scholar 

  89. Peng ZA, Peng X (2002) J Am Chem Soc 124:3343–3353 doi:10.1021/ja0173167

    Article  CAS  Google Scholar 

  90. Peng ZA, Peng X (2001) J Am Chem Soc 123:1389–1395 doi:10.1021/ja0027766

    Article  CAS  Google Scholar 

  91. Stach EA, Pauzauskie PJ, Kuykendall T, Goldberger J, He R, Yang P (2003) Nano Lett 3:867–869 doi:10.1021/nl034222h

    Article  CAS  Google Scholar 

  92. Ding Y, Gao PX, Wang ZL (2004) J Am Chem Soc 126:2066–2072 doi:10.1021/ja039354r

    Article  CAS  Google Scholar 

  93. Bakkers EPAM, Verheijen MA (2003) J Am Chem Soc 125:3440–3441 doi:10.1021/ja0299102

    Article  CAS  Google Scholar 

  94. Kuno M, Ahmad O, Protasenko V, Bacinello D, Kosel TH (2006) Chem Mater 18:5722–5732 doi:10.1021/cm061559m

    Article  CAS  Google Scholar 

  95. Hull KL, Grebinski JW, Kosel TH, Kuno M (2005) Chem Mater 17:4416–4425 doi:10.1021/cm050952±

    Article  CAS  Google Scholar 

  96. Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Chem Mater 8:173–180 doi:10.1021/cm9503137

    Article  CAS  Google Scholar 

  97. Protasenko V, Bacinello D, Kuno M (2006) J Phys Chem B 110:25322–25331 doi:10.1021/jp066034w

    Article  CAS  Google Scholar 

  98. Robel I, Bunker BA, Kamat PV, Kuno M (2006) Nano Lett 6:1344–1349 doi:10.1021/nl060199z

    Article  CAS  Google Scholar 

  99. Ma C, Wang ZL (2005) Adv Mater 17:2635–2639 doi:10.1002/adma.200500805

    Article  CAS  Google Scholar 

  100. Xi LF, Lam YM, Xu YP, Li LJ (2008) J Colloid Interface Sci 320:491–500 doi:10.1016/j.jcis.2008.01.048

    Article  CAS  Google Scholar 

  101. Panda AB, Glaspell G, El-Shall MS (2008) J Am Chem Soc 130:4203–4203 doi:10.1021/ja8003717

    Article  CAS  Google Scholar 

  102. Puthussery J, Lan A, Kosel TH, Kuno M (2008) ACS Nano 2:357–367 doi:10.1021/nn700270a

    Article  CAS  Google Scholar 

  103. Lu X, Hanrath T, Johnston KP, Korgel BA (2003) Nano Lett 3:93–99 doi:10.1021/nl0202307

    Article  CAS  Google Scholar 

  104. Hanrath T, Korgel BA (2002) J Am Chem Soc 124:1424–1429 doi:10.1021/ja016788i

    Article  CAS  Google Scholar 

  105. Schricker AD, Joshi SV, Hanrath T, Banerjee SK, Korgel BA (2006) J Phys Chem B 110:6816–6823 doi:10.1021/jp055663n

    Article  CAS  Google Scholar 

  106. Yu H, Li J, Loomis RA, Gibbons PC, Wang LW, Buhro WE (2003) J Am Chem Soc 125:16168–16169 doi:10.1021/ja037971

    Article  CAS  Google Scholar 

  107. Yong K-T, Sahoo Y, Swihart MT, Prasad PN (2006) Adv Mater 18:1978–1982 doi:10.1002/adma.200600368

    Article  CAS  Google Scholar 

  108. Acharya S, Patla I, Kost J, Efrima S Golan Y (2006) J Am Chem Soc 128:9294–9295 doi:10.1021/ja062404i

    Article  CAS  Google Scholar 

  109. Dong L, Gushtyuk T, Jiao J (2004) J Phys Chem B 108:1617–1620 doi:10.1021/jp0364811

    Article  CAS  Google Scholar 

  110. Sun SQ, Li T (2007) Cryst Growth Des 7:2367–2371 doi:10.1021/cg060529t

    Article  CAS  Google Scholar 

  111. Zhang P, Gao L (2003) Langmuir 19:208–210 doi:10.1021/la0206458

    Article  CAS  Google Scholar 

  112. Barrelet CJ, Wu Y, Bell DC, Lieber CM (2003) J Am Chem Soc 125:11498–11499 doi:10.1021/ja036990g

    Article  CAS  Google Scholar 

  113. Datta A, Panda SK, Chaudhuri S (2007) J Phys Chem C 111:17260–17264 doi:10.1021/jp076093p

    Article  CAS  Google Scholar 

  114. Saunders AE, Popov I, Banin U (2006) J Phys Chem B 110:25421–25429 doi:10.1021/jp065594s

    Article  CAS  Google Scholar 

  115. Jang JS, Joshi UA, Lee JS (2007) J Phys Chem C 111:13280–13287 doi:10.1021/jp072683b

    Article  CAS  Google Scholar 

  116. Yong KT, Sahoo Y, Swihart MT, Prasad PN (2007) J Phys Chem C 111:2447–2458 doi:10.1021/jp066392z

    Article  CAS  Google Scholar 

  117. Wang X, Xi G, Liu Y, Qian Y (2008) Cryst Growth Des 8:1406–1411 doi:10.1021/cg070415x

    Article  CAS  Google Scholar 

  118. Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) J Am Chem Soc 126:11752–11753 doi:10.1021/ja047659f

    Article  CAS  Google Scholar 

  119. Houtepen AJ, Koole R, Vanmaekelbergh D, Meeldijk J, Hickey SG (2006) J Am Chem Soc 128:6792–6793 doi:10.1021/ja061644v

    Article  CAS  Google Scholar 

  120. Cao H, Gong Q, Qian X, Wang H, Zai J, Zhu Z (2007) Cryst Growth Des 7:425–429 doi:10.1021/cg060415h

    Article  CAS  Google Scholar 

  121. Zhu J, Aruna ST, Koltypin Y, Gedanken A (2000) Chem Mater 12:143–147 doi:10.1021/cm990459w

    Article  CAS  Google Scholar 

  122. Lu W, Gao P, Jian WB, Wang ZL, Fang J (2004) J Am Chem Soc 126:14816–14821 doi:10.1021/ja046769j

    Article  CAS  Google Scholar 

  123. Choudhury KR, Sahoo Y, Prasad PN (2005) Adv Mater 17:2877–2881 doi:10.1002/adma.200501489

    Article  CAS  Google Scholar 

  124. Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Nano Lett 6:709–714 doi:10.1021/nl052472n

    Article  CAS  Google Scholar 

  125. Ni Y, Liu H, Wang F, Liang Y, Hong J, Ma X et al (2004) Cryst Growth Des 4:759–764 doi:10.1021/cg034103f

    Article  CAS  Google Scholar 

  126. Ma Y, Qi L, Ma J, Cheng H (2004) Cryst Growth Des 4:351–354 doi:10.1021/cg034174e

    Article  CAS  Google Scholar 

  127. Bierman MJ, Lau YKA, Jin S (2007) Nano Lett 7:2907–2912 doi:10.1021/nl071405l

    Article  CAS  Google Scholar 

  128. Lee SM, Jun YW, Cho SN, Cheon J (2002) J Am Chem Soc 124:11244–11245 doi:10.1021/ja026805j

    Article  CAS  Google Scholar 

  129. Gao F, Lu Q, Liu X, Yan Y, Zhao D (2001) Nano Lett 1:743–748 doi:10.1021/nl0156383

    Article  CAS  Google Scholar 

  130. Chen J, Chen L, Wu LM (2007) Inorg Chem 46:8038–8043 doi:10.1021/ic7008336

    Article  CAS  Google Scholar 

  131. Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Chem Mater 18:5965–5972 doi:10.1021/cm061771q

    Article  CAS  Google Scholar 

  132. Tuan HY, Lee DC, Hanrath T, Korgel BA (2005) Chem Mater 17:5705–5711 doi:10.1021/cm0513031

    Article  CAS  Google Scholar 

  133. Tuan HY, Lee DC, Hanrath T, Korgel BA (2005) Nano Lett 5:681–684 doi:10.1021/nl050099d

    Article  CAS  Google Scholar 

  134. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425–2427 doi:10.1126/science.1069156

    Article  CAS  Google Scholar 

  135. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Science 310:462–465 doi:10.1126/science.1117908

    Article  CAS  Google Scholar 

  136. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) J Am Chem Soc 125:13914–13915 doi:10.1021/ja037969i

    Article  CAS  Google Scholar 

  137. Stone JW, Sisco PN, Goldsmith EC, Baxter SC, Murphy C (2007) J Nano Lett 7:116–119 doi:10.1021/nl062248d

    Article  CAS  Google Scholar 

  138. Wu HY, Huang WL, Huang MH (2007) Cryst Growth Des 7:831–835 doi:10.1021/cg060788i

    Article  CAS  Google Scholar 

  139. Moon JM, Wei A (2005) J Phys Chem B 109:23336–23341 doi:10.1021/jp054405n

    Article  CAS  Google Scholar 

  140. Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661–6664 doi:10.1021/jp971656q

    Article  CAS  Google Scholar 

  141. Tian Y, Liu H, Zhao G, Tatsuma T (2006) J Phys Chem B 110:23478–23481 doi:10.1021/jp065292q

    Article  CAS  Google Scholar 

  142. Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649 doi:10.1021/ja047846d

    Article  CAS  Google Scholar 

  143. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065–4067 doi:10.1021/jp0107964

    Article  CAS  Google Scholar 

  144. Gou L, Murphy C (2005) Chem Mater 17:3668–3672 doi:10.1021/cm050525w

    Article  CAS  Google Scholar 

  145. Gao J, Bender CM, Murphy CJ (2003) Langmuir 19:9065–9070 doi:10.1021/la034919i

    Article  CAS  Google Scholar 

  146. Wu HY, Chu HC, Kuo TJ, Kuo CL, Huang MH (2005) Chem Mater 17:6447–6451 doi:10.1021/cm051455w

    Article  CAS  Google Scholar 

  147. Kim F, Song JH, Yang P (2002) J Am Chem Soc 124:14316–14317 doi:10.1021/ja028110o

    Article  CAS  Google Scholar 

  148. Nishioka K, Niidome Y, Yamada S (2007) Langmuir 23:10353–10356 doi:10.1021/la7015534

    Article  CAS  Google Scholar 

  149. Gole A, Murphy CJ (2004) Chem Mater 16:3633–3640 doi:10.1021/cm0492336

    Article  CAS  Google Scholar 

  150. Zijlstra P, Bullen C, Chon JWM, Gu M (2006) J Phys Chem B 110:19315–19318 doi:10.1021/jp0635866

    Article  CAS  Google Scholar 

  151. Chen HM, Peng HC, Liu RS, Asakura K, Lee CL, Lee JF et al (2005) J Phys Chem B 109:19553–19555 doi:10.1021/jp053657l

    Article  CAS  Google Scholar 

  152. Yong K-T, Sahoo Y, Swihart M, Schneeberger P, Prasad P (2008) Top Catal 47:49–60 doi:10.1007/s11244-007-9030-7

    Article  CAS  Google Scholar 

  153. Gole A, Murphy CJ (2005) Chem Mater 17:1325–1330 doi:10.1021/cm048297d

    Article  CAS  Google Scholar 

  154. Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Bioconjug Chem 18:1490–1497 doi:10.1021/bc070132i

    Article  CAS  Google Scholar 

  155. Ding H, Yong KT, Roy I, Pudavar HE, Law WC, Bergey EJ et al (2007) J Phys Chem C 111:12552–12557 doi:10.1021/jp0733419

    Article  CAS  Google Scholar 

  156. Liao H, Hafner JH (2005) Chem Mater 17:4636–4641 doi:10.1021/cm050935k

    Article  CAS  Google Scholar 

  157. Yu C, Nakshatri H, Irudayaraj J (2007) Nano Lett 7:2300–2306 doi:10.1021/nl070894m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the NCI RO1CA119397 and the John R. Oishei Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Swihart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, KT., Swihart, M.T., Ding, H. et al. Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging. Plasmonics 4, 79–93 (2009). https://doi.org/10.1007/s11468-009-9078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9078-2

Keywords

Navigation