Skip to main content
Log in

Surface Plasmon Enhancement at a Liquid–Metal–Liquid Interface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Herein, we report the first experimental demonstration of surface plasmon enhancement at a liquid–metal–liquid interface using a pseudo-Kretschmann geometry. Pumping gold nanoparticle clusters at the interface of a p-xylene–water mixture, we were able to measure a fluorescence enhancement of three orders of magnitude in Rose Bengal at an excitation wavelength of 532 nm. The observed increase is due to the local electric field enhancement and the reduction of the fluorescence lifetime of dye molecules in the close vicinity of the metal surface. Theoretical modeling using the T-matrix method of the electric field intensity enhancement of emulated surfaces supports the experimental results. This new approach will open a new road for the study of dynamic systems using plasmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ritchie RH (1957) Phys Rev 106:874–881

    Article  CAS  Google Scholar 

  2. Raether H (1988) Surface plasmons on smooth and rough surfaces and Grattings. New York, Springer-Verlag

    Google Scholar 

  3. Otto AZ (1968) Phys 216:398–410

    Article  CAS  Google Scholar 

  4. Kretschmann EZ (1971) Phys 241:313–324

    Article  CAS  Google Scholar 

  5. Fujimoto F, Komaki KJ (1968) Phys Soc Japan 25:1679–1687

    Google Scholar 

  6. Nie S, Emory SR (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  7. Otto A, Mrozek I, Grabhorn H, Akemann WJ (1992) Phys Condens Mater 4:1143–1212

    Article  CAS  Google Scholar 

  8. Cohanoschi I, Hernandez FE (2005) J Phys Chem B 109:14506–14512

    Article  CAS  Google Scholar 

  9. Chen CK, de Castro AR, Chen YR (1981) Phys Rev Lett 46:145–148

    Article  CAS  Google Scholar 

  10. Lakowicz JR (2001) Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  11. Kano H, Kawata S (1996) Opt Lett 21:1848–1850

    Article  CAS  Google Scholar 

  12. Wenseleers W, Stellacci F, Meyer-Friedrichsen T, Mangel T, Bauer CA, Pond SJK, Marder SR, Perry JW (2002) J Phys Chem B 106:6853–6863

    Article  CAS  Google Scholar 

  13. Glass AM, Wokaun A, Heritage JP, Bergman JG, Liao PF, Olson DH (1981) Phys Rev B 24:4906–4909

    Article  CAS  Google Scholar 

  14. Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) J Chem Phys 78:5324–5338

    Article  CAS  Google Scholar 

  15. Libermann T, Knoll W (2000) Colloids Surf, A Physicochem Eng Asp 171:115–130

    Article  Google Scholar 

  16. Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) J Phys Chem B 106:2191–2195

    Article  CAS  Google Scholar 

  17. Geddes CD, Lakowicz JR (2002) J Fluoresc 12:121–129

    Article  Google Scholar 

  18. Aslan K, Previte MJR, Zhang YX, Geddes CD (2007) Biophys J 371A–371A

  19. Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) J Phys Chem B 103:3854–3863

    Article  CAS  Google Scholar 

  20. Turkevich J, Stevenson PC, Hiller J (1951) Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  21. Suzuki M, Niidome Y, Terazaki N, Kuwahara Y, Inoue K, Yamada S (2004) Jpn J Appl Phys 43:L554–L556

    Article  CAS  Google Scholar 

  22. Previte MJR, Aslan K, Zhang Y, Geddes CD (2007) J Phys Chem C 111:6051–6059

    Article  CAS  Google Scholar 

  23. Nakamura T, Hayashi S (2005) Jpn J Appl Phys 44:6833–6837

    Article  CAS  Google Scholar 

  24. Barnes WL (1998) J Mod Opt 45:661–699

    Article  CAS  Google Scholar 

  25. Chew H (1987) J Chem Phys 87:1355–1360

    Article  CAS  Google Scholar 

  26. Hernández FE, Yu S, García M, Campiglia AD (2005) J Phys Chem B 109:9499–9504

    Article  CAS  Google Scholar 

  27. Waterman PC (1971) Phys Rev D 3:825–839

    Article  Google Scholar 

  28. Mishchenko MI, Travis LD, Mackowski DW (1996) J Quant Spectrosc Radiat Transfer 55:535–575

    Article  CAS  Google Scholar 

  29. Johansson P, Xu H, Käll M (2005) Phys Rev B 72:035427_1–035427_17

    Article  CAS  Google Scholar 

  30. Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002_1–113002_4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by start up funds provided to FEH and SZ by the Department of Chemistry, University of Central Florida, and the In-House Research Award (# 11649003), UCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencio E. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohanoschi, I., Thibert, A., Toro, C. et al. Surface Plasmon Enhancement at a Liquid–Metal–Liquid Interface. Plasmonics 2, 89–94 (2007). https://doi.org/10.1007/s11468-007-9030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-007-9030-2

Keywords

Navigation