Skip to main content
Log in

Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, and B. V. R. Chowdari, Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater. 17(7), 2792 (2006)

    Google Scholar 

  2. T. Yu, Y. W. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C. T. Lim, J. T. L. Thong, and C. H. Sow, Controlled growth and field-emission properties of cobalt oxide nanowalls, Adv. Mater. 17(13), 1595 (2005)

    Article  Google Scholar 

  3. X. D. Gao, X. M. Li, W. D. Yu, F. Peng, and C. Y. Zhang, Oversized hexagonal nanosheets of layered zinc hydroxysulfates via the hexamethylenetetraminemediated solution route, Mater. Res. Bull. 41(3), 608 (2006)

    Article  Google Scholar 

  4. X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, and N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat. Nanotechnol. 6(1), 28 (2011)

    Article  ADS  Google Scholar 

  5. H. L. Wang, H. S. Casalongue, Y. Y. Liang, and H. J. Dai, NiOH2 nanoplates grown on graphene as advanced electrochemical pseudocapacitormaterials, J. Am. Chem. Soc. 132(21), 7472 (2010)

    Article  Google Scholar 

  6. S. H. Chen and D. L. Carroll, Silver nanoplates: Size control in two dimensions and formation mechanisms, J. Phys. Chem. B 108(18), 5500 (2004)

    Article  Google Scholar 

  7. X. P. Sun, S. J. Dong, and E. Wang, Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route, Angew. Chem. Int. Ed. 43(46), 6360 (2004)

    Article  Google Scholar 

  8. A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)

    Article  ADS  Google Scholar 

  9. M. Q. Yang, N. Zhang, M. Pagliaro, and Y. J. Xu, Artificial photosynthesis over graphene-semiconductor composites: Are we getting better? Chem. Soc. Rev. 43(24), 8240 (2014)

    Article  Google Scholar 

  10. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, et al., Challenges and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)

    Article  Google Scholar 

  11. J. Yu, Y. Yu, P. Zhou, W. Xiao, and B. Cheng, Morphology dependent photocatalytic H2-production Activity of CdS, Appl. Catal. B 184(2), 156 (2014)

    Google Scholar 

  12. F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21(39), 15171 (2011)

    Article  Google Scholar 

  13. J. Hong, Y. Wang, Y. Wang, W. Zhang, and R. Xu, Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water, ChemSusChem 6(12), 2263 (2013)

    Article  Google Scholar 

  14. X. Song, J. Hu, and H. Zeng, Two-dimensional semiconductors: Recent progress and future perspectives, J. Mater. Chem. 1, 2952 (2013)

    Google Scholar 

  15. S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods, J. Phys. Chem. C 116(44), 23653 (2012)

    Article  Google Scholar 

  16. Y. Xu, W. Zhao, R. Xu, Y. Shi, and B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visiblelight- driven water splitting photocatalysts for hydrogen evolution, Chem. Commun. 49(84), 9803 (2013)

    Article  Google Scholar 

  17. Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, J. Phys. Chem. C 118(24), 12727 (2014)

    Google Scholar 

  18. I. Y. Kim, Y. K. Jo, J. M. Lee, L. Wang, and S. J. Hwang, Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites, J. Phys. Chem. Lett. 5(23), 4149 (2014)

    Article  Google Scholar 

  19. T. Sagawa, S. Yoshikawa, and H. Imahori, Onedimensional nanostructured semiconducting materials for organic photovoltaics, J. Phys. Chem. Lett. 1(7), 1020 (2010)

    Article  Google Scholar 

  20. L. Yuan, M. Q. Yang, and Y. J. Xu, Tuning the surface charge of graphene for self-Assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity, Nanoscale 6(12), 6335 (2014)

    Article  ADS  Google Scholar 

  21. S. Milner, Polymer brushes, Science 251(4996), 905 (1991)

    Article  ADS  Google Scholar 

  22. A. Halperin, M. Tirrell, and T. P. Lodge, Tethered chains in polymer microstructures, Adv. Polym. Sci. 100, 31 (1992)

    Article  Google Scholar 

  23. G. S. Grest, Normal and shear forces between polymer brushes, Adv. Polym. Sci. 138, 149 (1999)

    Article  Google Scholar 

  24. R. C. Advincula, W. J. Brittain, K. C. Caster, and J. Rühe, Polymer Brushes, Weinheim: Wiley VCH, pp 427–440 (2004)

    Book  Google Scholar 

  25. G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Phys. Rev. A 33(5), 3628 (1986)

    Article  ADS  Google Scholar 

  26. A. Brasiello, S. Crescitelli, and G. Milano, Development of a coarse-grained model for simulations of tridecanoin liquid-solid phase transitions, Phys. Chem. Chem. Phys. 13(37), 16618 (2011)

    Article  Google Scholar 

  27. T. Carlsson, N. Kamerlin, G. A. Arteca, and C. Elvingson, Brownian dynamics of a compressed polymer brush model: Off-equilibrium response as a function of surface coverage and compression rate, Phys. Chem. Chem. Phys. 13(35), 16084 (2011)

    Article  Google Scholar 

  28. I. G. Elliott, T. L. Kuhl, and R. Faller, Molecular simulation study of the structure of high density polymer brushes in good solvent, Macromolecules 43(21), 9131 (2010)

    Article  ADS  Google Scholar 

  29. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)

    Article  ADS  MATH  Google Scholar 

  30. W. Humphrey, A. Dalke, and K. Schulten, VMD–Visual molecular dynamics, J. Mol. Graph. 14(1), 33 (1996)

    Article  Google Scholar 

  31. Y. F. Hua, L. X. Zhang, and L. Zhang, Compressiondriven migration of nanoparticles in semiflexible polymer brushes, Polymer 83(9), 67 (2016)

    Article  Google Scholar 

  32. A. Milchev and K. Binder, Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression, Soft Matter 10(21), 3783 (2014)

    Article  ADS  Google Scholar 

  33. G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys. 23(2), 187 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 21374102, 21674082, and 21674096). We are grateful to the reviewers of our manuscript for their detailed and insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linxi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., Deng, Z., Jiang, Y. et al. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression. Front. Phys. 12, 128701 (2017). https://doi.org/10.1007/s11467-017-0665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0665-y

Keywords

Navigation