Skip to main content
Log in

Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

An Erratum to this article was published on 03 April 2020

This article has been updated

Abstract

Laser-induced breakdown spectroscopy (LIBS) has attracted much attention in terms of both scientific research and industrial application. An important branch of LIBS research in Asia, the development of data processing methods for LIBS, is reviewed. First, the basic principle of LIBS and the characteristics of spectral data are briefly introduced. Next, two aspects of research on and problems with data processing methods are described: i) the basic principles of data preprocessing methods are elaborated in detail on the basis of the characteristics of spectral data; ii) the performance of data analysis methods in qualitative and quantitative analysis of LIBS is described. Finally, a direction for future development of data processing methods for LIBS is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16(2), 59 (1962)

    Google Scholar 

  2. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry—Applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)

    Article  ADS  Google Scholar 

  3. D. Díaz, D. W. Hahn, and A. Molina, Laser-induced breakdown spectroscopy (LIBS) for detection of ammonium nitrate in soils, in: SPIE Defense, Security, and Sensing, 2009, International Society for Optics and Photonics

    Google Scholar 

  4. R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains, Appl. Spectrosc. 64(7), 750 (2010)

    Article  ADS  Google Scholar 

  5. V. Juvé, R. Portelli, M. Boueri, M. Baudelet, and J. Yu, Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 63(10), 1047 (2008)

    Article  ADS  Google Scholar 

  6. S. Sreedhar, M. K. Gundawar, and S. Venugopal Rao, Laser induced breakdown spectroscopy for classification of high energy materials using elemental intensity ratios, Def. Sci. J. 64(4), 332 (2014)

    Article  Google Scholar 

  7. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration, Appl. Spectrosc. 54(3), 331 (2000)

    Article  ADS  Google Scholar 

  8. D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)

    ADS  Google Scholar 

  9. R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: A review of methods and results, Sensors. 10(8), 7434 (2010)

    Google Scholar 

  10. G. Y. Hou, P. Wang and C. Z. Tong, Progress in laserinduced breakdown spectroscopy and its applications, Chinese Opt. 4, 009 (2013)

    Google Scholar 

  11. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)

    Article  Google Scholar 

  12. P. K. Diwakar, S. S. Harilal, J. R. Freeman, and A. Hassanein, Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 65 (2013)

    Article  ADS  Google Scholar 

  13. G. Cristoforetti, E. Tognoni, and L. A. Gizzi, Thermodynamic equilibrium states in laser-induced plasmas: From the general case to laser-induced breakdown spectroscopy plasmas, Spectrochim. Acta B 90, 1 (2013)

    Article  Google Scholar 

  14. D. Prochazka, J. Kaiser, K. Novotny, and M. Galiova, Recent development of double pulse laser induced breakdown spectroscopy (DP-LIBS) setup, J. Biochem. Tech. 2(5), S116 (2014)

    Google Scholar 

  15. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)

    Article  ADS  Google Scholar 

  16. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)

    Article  ADS  Google Scholar 

  17. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett. 98(13), 131501 (2011)

    Article  ADS  Google Scholar 

  18. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)

    Article  ADS  Google Scholar 

  19. Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, Uv fs–ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis, J. Anal. At. Spectrom 28(5), 743 (2013)

    Article  Google Scholar 

  20. J. El Haddad, L. Canioni, and B. Bousquet, Good practices in LIBS analysis: Review and advices, Spectrochim. Acta B 101, 171 (2014)

    Article  ADS  Google Scholar 

  21. Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. and Technol. 17(8), 617 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Fujimoto, Plasma Spectroscopy, Vol. 123, Oxford University Press on Demand, 2004

    Book  MATH  Google Scholar 

  23. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy, Appl. Spectrosc. 50(9), 1175 (1996)

    Article  ADS  Google Scholar 

  24. F. Bredice, F. O. Borges, H. Sobral, M. Villagran- Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements, Spectrochim. Acta B 61(12), 1294 (2006)

    Article  ADS  Google Scholar 

  25. B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, A method for improving wavelet threshold denoising in laser-induced breakdown spectroscopy, Spectrochim. Acta B 107, 32 (2015)

    Article  ADS  Google Scholar 

  26. M. Sabsabi and P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization, Appl. Spectrosc. 49(4), 499 (1995)

    Article  ADS  Google Scholar 

  27. B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)

    Article  Google Scholar 

  28. L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B 64(3), 278 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)

  30. L. X. Sun, and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)

    Article  Google Scholar 

  31. Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)

    Article  ADS  Google Scholar 

  32. L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)

    Article  Google Scholar 

  33. Z. Y. Hou, Z. Wang, S. L. Lui, T. B. Yuan, L. Z. Li, Z. Li, and W. D. Ni, Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom. 28(1), 107 (2013)

    Article  Google Scholar 

  34. J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)

    Article  Google Scholar 

  35. Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)

    Article  Google Scholar 

  36. Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26 11, 2175 (2011)

    Article  Google Scholar 

  37. X. Li, Z. Wang, S.L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laserinduced breakdown spectroscopy measurements, Spectrochim. Acta B 88, 180 (2013)

    Article  ADS  Google Scholar 

  38. X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)

    Article  ADS  Google Scholar 

  39. Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)

    Article  Google Scholar 

  40. T. B. Yuan, Z. Wang, Z. Li, W.D. Ni, and J.M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)

    Article  Google Scholar 

  41. T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)

    Article  Google Scholar 

  42. J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A Nonlinearized Multivariate Dominant Factor-Based Partial Least Squares (PLS) Model for Coal Analysis by Using Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc. 67 3, 291 (2013)

    Article  ADS  Google Scholar 

  43. L. W. Sheng, T. L. Zhang, G. H. Niu, K. Wang, H. S. Tang, Y. X. Duan, and H. Li, Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)

    Article  Google Scholar 

  44. T. L. Zhang, L. Liang, K. Wang, H. S. Tang, X. F. Yang, Y. X. Duan, and H. Li, A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR), J. Anal. At. Spectrom. 29 12, 2323 (2014)

    Article  Google Scholar 

  45. L. Liang, T. L. Zhang, K. Wang, H. S. Tang, X. F. Yang, X. Q. Zhu, Y. X. Duan, and H. Li, Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines, Appl. Opt. 53(4), 544 (2014)

    Article  ADS  Google Scholar 

  46. X. Q. Zhu, T. Xu, Q. Y. Lin, L. Liang, G. H. Niu, H. J. Lai, M. J. Xu, X. Wang, H. Li, and Y. X. Duan, Advanced statistical analysis of laser-induced breakdown spectroscopy data to discriminate sedimentary rocks based on Czerny–Turner and Echelle spectrometers, Spectrochim. Acta B 93, 8 (2014)

    Article  ADS  Google Scholar 

  47. M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)

    Article  Google Scholar 

  48. S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)

    Article  Google Scholar 

  49. S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)

    Article  Google Scholar 

  50. S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)

    Article  ADS  Google Scholar 

  51. J. H. In, C. K. Kim, S. H. Lee, H. J. Lee, and S. Jeong, Improvement of selenium analysis during laser-induced breakdown spectroscopy measurement of CuIn1-x GaxSe2 solar cell films by self-absorption corrected normalization, J. Anal. At. Spectrom. 28(8), 1327 (2013)

    Article  Google Scholar 

  52. J. H. In, C. K. Kim, S. H. Lee, J. H. Choi, and S. Jeong, Rapid quantitative analysis of elemental composition and depth profile of Cu(In, Ga)Se2 thin solar cell film using laser-induced breakdown spectroscopy, Thin Solid Films 579, 89 (2015)

    Google Scholar 

  53. Y. Lee, K. S. Ham, S. H. Han, J. Yoo, and S. Jeong, Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laserinduced plasma emission spectra, Spectrochim. Acta B 101, 57 (2014)

    Article  ADS  Google Scholar 

  54. M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt. 54(1), 123 (2015)

    Article  ADS  Google Scholar 

  55. M. Bahreini and S. H. Tavassoli, Possibility of thyroidism diagnosis by laser induced breakdown spectroscopy of human fingernail, J. Lasers Med. Sci. 3(3), 127 (2012)

    Google Scholar 

  56. X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, Accuracy improvement of quantitative analysis in laserinduced breakdown spectroscopy using modified wavelet transform, Opt. Express 22(9), 10233 (2014)

    Article  ADS  Google Scholar 

  57. L. Hu, N. J. Zhao, W. Q. Liu, L. Fang, D. H. Zhang, Y. Wang, D. S. Meng, Y. Yu, M. J. Ma, X. Xiao, Y. Wang, and J. G. Liu, Study on removing method of continuous background spectrum in libs of multi-element heavy metals in water, Chinese J. Lasers 41(7), 0715003 (2014)

    Article  Google Scholar 

  58. Y. Li and R. E. Zheng, The symmetric zero-area conversion adaptive peak-seeking method research for LIBS/Raman spectra, Spectroscopy and Spectral Analysis 33(2), 438 (2013)

    Google Scholar 

  59. P. F. Chen, D. Tian, S. J. Qiao, and G. Yang, An automatic peak detection method for libs spectrum based on continuous wavelet transform, Spectroscopy and Spectral Analysis 34(7), 1969 (2014)

    Google Scholar 

  60. J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)

    Article  ADS  Google Scholar 

  61. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta B 57 2, 339 (2002)

    Article  ADS  Google Scholar 

  62. Z. B. Ni, F. Z. Dong, X. L. Chen, J. G. Wang, W. G. He, and H. B. Fu, Research on algorithm for self-absorption correction based on multi-particles libs spectra, Spectroscopy and Spectral Analysis 34(9), 2523 (2014)

    Google Scholar 

  63. J. R. Cordeiro, M. I. V. Martinez, R. W. C. Li, A. P. Cardoso, L. C. Nunes, F. J. Krug, T. R. L. C. Paixão, C. S. Nomura, and J. Gruber, Identification of four wood species by an electronic nose and by LIBS, Int. J. Electrochem. 2012, 1 (2012)

    Article  Google Scholar 

  64. F. C. De Lucia and J. L. Gottfried, Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification, Spectrochim. Acta B 66(2), 122 (2011)

    Article  ADS  Google Scholar 

  65. N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. Kumar Gundawar, Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability, Anal. Chem. 84 6, 2686 (2012)

    Article  Google Scholar 

  66. G. Vítková, K. Novotný, L. Prokeš, A. Hrdlicka, J. Kaiser, J. Novotný, R. Malina, and D. Prochazka, Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks, Spectrochim. Acta B 73, 1 (2012)

    Article  ADS  Google Scholar 

  67. K. Liu, Q. Q. Wang and H. Zhao, Differentiation of plastic with laser induced breakdown spectroscopy, Spectroscopy and Spectral Analysis 31(5), 1171 (2011)

    Google Scholar 

  68. Y. Yu, Z. Q. Hao, C. M. Li, L. B. Guo, K. H. Li, Q. D. Zeng, X. Y. Li, Z. Ren, and X. Y. Zeng, Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm, Acta Phys. Sinica 62(21), 215201–215201 (2013)

    Google Scholar 

  69. Y. Tian, Z. N. Wang, X. S. Han, H. M. Hou, and R. E. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 102, 52 (2014)

    Article  ADS  Google Scholar 

  70. Q. Q. Wang, Z. W. Huang, K. Liu, W. J. Li, and J. X. Yan, Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy and Spectral Analysis 32(12), 3179 (2012)

    Google Scholar 

  71. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)

    Article  ADS  Google Scholar 

  72. V. K. Unnikrishnan, R. Nayak, K. Aithal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Analysis of trace elements in complex matrices (soil) by Laser Induced Breakdown Spectroscopy (LIBS), Anal. Methods 5(5), 1294 (2013)

    Article  Google Scholar 

  73. V. Sturm, L. Peter, and R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Spectrosc. 54(9), 1275 (2000)

    Article  ADS  Google Scholar 

  74. K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3315 (2011)

    Article  Google Scholar 

  75. J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero, and M. D. Luque de Castro, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15 6, 587 (2000)

    Article  Google Scholar 

  76. C. L. Wang. J. G. Liu, N. J. Zhao, M. J. Ma, Y. Wang, L. Hu, D. H. Zhang, Y. Yu, D. S. Meng, W. Zhang, J. Liu, Y. J. Zhang, and W. Q. Liu, Quantitative analysis of laser-induced breakdown spectroscopy of heavy metals in water based on support-vector-machine regression, Acta Opt. Sinica 3, 045 (2013)

    Google Scholar 

  77. E. C. Ferreira, D. M. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system, Spectrochim. Acta B At. Spectrosc. 63 10, 1216 (2008)

    Article  ADS  Google Scholar 

  78. J. H. Yang, C. C. Yi, J. W. Xu, and X. Ma, Laserinduced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)

    Article  ADS  Google Scholar 

  79. J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero, and M. D. Luque de Castro, Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15 6, 587 (2000)

    Article  Google Scholar 

  80. H. Lin, Y. Mingyin, L. Jinlong, L. Muhua, and H. Xiuwen, Determination of Cadmium in Gannan Navel Orange using Laser-Induced Breakdown Spectroscopy Coupled with Partial Least Squares Calibration Model, J. Appl. Spectrosc. 80(6), 957 (2014)

    Article  ADS  Google Scholar 

  81. X. H. Zou, Z. Q. Hao, R. X. Yi, L. B. Guo, M. Shen, X. Y. Li, Z. M. Wang, X. Y. Zeng, and Y. F. Lu, Quantitative analysis of soil by laser-induced breakdown spectroscopy using genetic algorithm-partial least squares, Chinese J. Anal. Chem. 43(2), 181 (2015)

    Google Scholar 

  82. C. L. Wang. J. G. Liu, N. J. Zhao, M. J. Ma, Y. Wang, L. Hu, D. H. Zhang, Y. Yu, D. S. Meng, W. Zhang, J. Liu, Y. J. Zhang, and W. Q. Liu, Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy, Acta Phys. Sinica 12, 050 (2013)

    Google Scholar 

  83. Q. Shi, G. H. Niu, Q. Y. Lin, T. Xu, F. J. Li, and Y. X. Duan, Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: comparison of support vector regression and partial least squares regression chemometric methods, J. Anal. At. Spectrom. 30(12), 2384 (2015)

    Article  Google Scholar 

  84. T. L. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. S. Tang, X. F. Yang, and H. Li, Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods, J. Anal. At. Spectrom. 30(2), 368 (2015)

    Article  Google Scholar 

  85. Sun Lanxiang, Yu Haibin, Cong Zhibo, and Xin Yong, Quantitative analysis of Mn and Si of steels by laserinduced breakdown spectroscopy combined with neural networks, Acta Opt. Sin. 30 9, 2757 (2010)

    Article  Google Scholar 

  86. K. H. Li, L. B. Guo, C. M. Li, X. Y. Li, M. Shen, Z. Zheng, Y. Yu, R. F. Hao, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, and X. Y. Zeng, Analytical-performance improvement of laser-induced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network, J. Anal. At. Spectrom. 30(7), 1623 (2015)

    Article  Google Scholar 

  87. Q. M. Shen, W. D. Zhou, and K. X. Li, Quantative elemental analysis using laser induced breakdown spectroscopy and neuro-genetic approach, Chinese J. Lasers 38(3), 247 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Bo Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YM., Guo, LB., Li, JM. et al. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data. Front. Phys. 11, 114212 (2016). https://doi.org/10.1007/s11467-016-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0604-3

Keywords

Navigation