Skip to main content
Log in

Oblique angle deposition and its applications in plasmonics

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting applications recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Rodriguez-Gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzan, Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties, J. Mater. Chem., 2005, 15(17): 1755

    Article  Google Scholar 

  2. M. M. Miller and A. A. Lazarides, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B, 2005, 109(46): 21556

    Article  Google Scholar 

  3. C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 2005, 105(4): 1025

    Article  Google Scholar 

  4. H. X. Li and L. Rothberg, Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, Proc. Natl. Acad. Sci. USA, 2004, 101(39): 14036

    Article  ADS  Google Scholar 

  5. N. L. Rosi and C. A. Mirkin, Nanostructures in biodiagnostics, Chem. Rev., 2005, 105(4): 1547

    Article  Google Scholar 

  6. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Surface-enhanced Raman spectroscopy (SERS): Progress and trends, Anal. Bioanal. Chem., 2012, 403(1): 27

    Article  Google Scholar 

  7. P. Negri and R. A. Dluhy, Ag nanorod based surface-enhanced Ramanspectroscopy applied to bioanalytical sensing, J. Biophotonics, 2013, 6: 20

    Article  Google Scholar 

  8. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today, 2012, 15(1–2): 16

    Article  Google Scholar 

  9. R. F. Aroca, D. J. Ross, and C. Domingo, Surface-enhanced infrared spectroscopy, Appl. Spectrosc., 2004, 58(11): 324A

    Article  ADS  Google Scholar 

  10. M. Osawa, Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn., 1997, 70(12): 2861

    Article  Google Scholar 

  11. N. Bondre, Y. X. Zhang, and C. D. Geddes, Metal-enhanced fluorescence based calcium detection: Greater than 100-fold increase in signal/noise using Fluo-3 or Fluo-4 and silver nanostructures, Sens. Actuators B, 2011, 152(1): 82

    Article  Google Scholar 

  12. R. Nooney, A. Clifford, X. Leguevel, O. Stranik, C. McDonagh, and B. D. Maccraith, Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence, Anal. Bioanal. Chem., 2010, 396(3): 1127

    Article  Google Scholar 

  13. A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, M. A. Schenerman, and C. D. Geddes, Metalenhanced PicoGreen fluorescence: Application to fast and ultra-sensitive pg/ml DNA quantitation, J. Immunol. Methods, 2010, 362(1–2): 95

    Article  Google Scholar 

  14. Y. Liu and X. Zhang, Metamaterials: A new frontier of science and technology, Chem. Soc. Rev., 2011, 40(5): 2494

    Article  Google Scholar 

  15. T. Tanaka, Plasmonic metamaterials, IEICE Electron. Express, 2012, 9(2): 34

    Article  Google Scholar 

  16. X. Z. Zhou, F. Boey, F. W. Huo, L. Huang, and H. Zhang, Chemically functionalized surface patterning, Small, 2011, 7(16): 2273

    Article  Google Scholar 

  17. Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonic nanolithography: A review, Plasmonics, 2011, 6(3): 565

    Article  Google Scholar 

  18. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates, Science, 1995, 267(5204): 1629

    Article  ADS  Google Scholar 

  19. Y. J. Liu, H. Y. Chu, and Y. P. Zhao, Silver nanorod array substrates fabricated by oblique angle deposition: Morphological, optical, and SERS characterizations, J. Phys. Chem. C, 2010, 114(18): 8176

    Article  Google Scholar 

  20. Y. J. Jen, A. Lakhtakia, C. W. Yu, and C. T. Lin, Vapordeposited thin films with negative real refractive index in the visible regime, Opt. Express, 2009, 17(10): 7784

    Article  ADS  Google Scholar 

  21. K. Robbie, J. C. Sit, and M. J. Brett, Advanced techniques for glancing angle deposition, J. Vac. Sci. Technol. B, 1998, 16(3): 1115

    Article  Google Scholar 

  22. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, Periodically structured metallic substrates for SERS, Sens. Actuators B, 1998, 51(1–3): 285

    Article  Google Scholar 

  23. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, Surfaceenhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing, ACS Nano, 2008, 2(2): 377

    Article  Google Scholar 

  24. V.M. Shalaev,W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Negative index of refraction in optical metamaterials, Opt. Lett., 2005, 30(24): 3356

    Article  ADS  Google Scholar 

  25. S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, Yellow-light negative-index metamaterials, Opt. Lett., 2009, 34(22): 3478

    Article  Google Scholar 

  26. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B, 1999, 103(19): 3854

    Article  Google Scholar 

  27. C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B, 2001, 105(24): 5599

    Article  Google Scholar 

  28. A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, Nanosphere lithography: Fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy, Langmuir, 2004, 20(16): 6927

    Article  Google Scholar 

  29. L. Abelmann and C. Lodder, Oblique evaporation and surface diffusion, Thin Solid Films, 1997, 305(1–2): 1

    Article  ADS  Google Scholar 

  30. H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: A review and new experimental data, Mater. Sci. Eng. R, 1994, 11(7): 295

    Article  Google Scholar 

  31. K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. A, 1997, 15(3): 1460

    Article  ADS  Google Scholar 

  32. Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, Novel nano-column and nano-flower arrays by glancing angle deposition, Nano Lett., 2002, 2(4): 351

    Article  ADS  Google Scholar 

  33. Y. P. He and Y. P. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing growth, Nanoscale, 2011, 3(6): 2361

    Article  ADS  Google Scholar 

  34. J. X. Fu, Y. P. He, and Y. P. Zhao, Fabrication of heteronanorod structures by dynamic shadowing growth, IEEE Sens. J., 2008, 8(6): 989

    Article  Google Scholar 

  35. Y. P. He, Z. Y. Zhang, C. Hoffmann, and Y. P. Zhao, Embedding Ag nanoparticles into MgF2 nanorod arrays, Adv. Funct. Mater., 2008, 18(11): 1676

    Article  Google Scholar 

  36. Y. P. He, Y. P. Zhao, and J. S. Wu, The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition, Appl. Phys. Lett., 2008, 92(6): 063107

    Article  ADS  Google Scholar 

  37. Y. P. He, C. Brown, C. A. Lundgren, and Y. P. Zhao, The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties, Nanotechnology, 2012, 23(36): 365703

    Article  Google Scholar 

  38. G. K. Larsen, R. Fitzmorris, J. Z. Zhang, and Y. P. Zhao, Structural, optical, and photocatalytic properties of Cr:TiO2 nanorod array fabricated by oblique angle codeposition, J. Phys. Chem. C, 2011, 115(34): 16892

    Article  Google Scholar 

  39. G. K. Larsen, B. C. Fitzmorris, C. Longo, J. Z. Zhang, and Y. P. Zhao, Nanostructured homogenous CdSe-TiO2 composite visible light photoanodes fabricated by oblique angle codeposition, J. Mater. Chem., 2012, 22(28): 14205

    Article  Google Scholar 

  40. Y. P. He, J. S. Wu, and Y. P. Zhao, Designing catalytic nanomotors by dynamic shadowing growth, Nano Lett., 2007, 7(5): 1369

    Article  ADS  Google Scholar 

  41. Y. P. He, J. X. Fu, Y. Zhang, Y. P. Zhao, L. J. Zhang, A. L. Xia, and J. W. Cai, Multilayered Si/Ni nanosprings and their magnetic properties, Small, 2007, 3(1): 153

    Article  Google Scholar 

  42. W. Smith and Y. P. Zhao, Enhanced photocatalytic activity by aligned WO3/TiO2 two-layer nanorod arrays, J. Phys. Chem. C, 2008, 112(49): 19635

    Article  Google Scholar 

  43. W. Smith and Y. P. Zhao, Superior photocatalytic performance by vertically aligned core-shell TiO2/WO3 nanorod arrays, Catal. Commun., 2009, 10(7): 1117

    Article  Google Scholar 

  44. R. Gupta, M. J. Dyer, and W. A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films, J. Appl. Phys., 2002, 92(9): 5264

    Article  ADS  Google Scholar 

  45. J. X. Fu, A. Collins, and Y. P. Zhao, Optical properties and biosensor application of ultrathin silver films prepared by oblique angle deposition, J. Phys. Chem. C, 2008, 112(43): 16784

    Article  Google Scholar 

  46. J. X. Fu and Y. P. Zhao, Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth, Nanotechnology, 2010, 21(17): 175303

    Article  ADS  Google Scholar 

  47. D. A. Gish, F. Nsiah, M. T. McDermott, and M. J. Brett, Localized surface plasmon resonance biosensor using silver nanostructures fabricated by glancing angle deposition, Anal. Chem., 2007, 79(11): 4228

    Article  Google Scholar 

  48. D. R. H. Craig and F. Bohren, Absorption and scattering of light by small particles, New York: Wiley, 1983

    Google Scholar 

  49. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer, 1995

    Book  Google Scholar 

  50. J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates, J. Phys. Chem. C, 2008, 112(4): 895

    Article  Google Scholar 

  51. Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Surfaceenhanced Raman scattering from helical silver nanorod arrays, Chem. Commun., 2011, 47(15): 4466

    Article  Google Scholar 

  52. Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, Optical properties and surface enhanced raman scattering of L-shaped silver nanorod arrays, J. Phys. Chem. C, 2011, 115(29): 14131

    Article  Google Scholar 

  53. J. P. Singh, T. E. Lanier, H. Zhu, W. M. Dennis, R. A. Tripp, and Y. Zhao, Highly sensitive and transparent surface enhanced Raman scattering substrates made by active coldly condensed Ag nanorod arrays, J. Phys. Chem. C, 2012, 116(38): 20550

    Article  Google Scholar 

  54. Q. Zhou, X. Zhang, Y. Huang, Z. Li, Y. Zhao, and Z. Zhang, Enhanced surface-enhanced Raman scattering performance by folding silver nanorods, Appl. Phys. Lett., 2012, 100(11): 113101

    Article  ADS  Google Scholar 

  55. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett., 2005, 87(3): 031908

    Article  ADS  Google Scholar 

  56. C. L. Leverette, S. A. Jacobs, S. Shanmukh, S. B. Chaney, R. A. Dluhy, and Y. P. Zhao, Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy, Appl. Spectrosc., 2006, 60(8): 906

    Article  ADS  Google Scholar 

  57. J. L. Abell, J. M. Garren, and Y. P. Zhao, Dynamic rastering surface-enhanced Raman scattering (SERS) measurements on silver nanorod substrates, Appl. Spectrosc., 2011, 65(7): 734

    Article  ADS  Google Scholar 

  58. C. M. Ruan, G. Eres, W. Wang, Z. Y. Zhang, and B. H. Gu, Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy, Langmuir, 2007, 23(10): 5757

    Article  Google Scholar 

  59. M. A. De Jesús, K. S. Giesfeldt, J. M. Oran, N. A. Abu- Hatab, N. V. Lavrik, and M. J. Sepaniak, Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry, Appl. Spectrosc., 2005, 59(12): 1501

    Article  ADS  Google Scholar 

  60. Q. Zhou, Z. Li, Y. Yang, and Z. Zhang, Arrays of aligned, single crystalline silver nanorods for trace amount detection, J. Phys. D, 2008, 41(15): 152007

    Article  ADS  Google Scholar 

  61. L. D. Qin, S. L. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci. USA, 2006, 103(36): 13300

    Article  ADS  Google Scholar 

  62. S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, Phys. Chem. Chem. Phys., 2013, 15(1): 21

    Article  Google Scholar 

  63. Y. Nishikawa, T. Nagasawa, K. Fujiwara, and M. Osawa, Silver island films for surface-enhanced infrared absorption spectroscopy: Effect of island morphology on the absorption enhancement, Vib. Spectrosc., 1993, 6(1): 43

    Article  Google Scholar 

  64. M. Osawa and M. Ikeda, Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms, J. Phys. Chem., 1991, 95(24): 9914

    Article  Google Scholar 

  65. Y. Nishikawa, K. Fujiwara, K. Ataka, and M. Osawa, Surface-enhanced infrared external reflection spectroscopy at low reflective surfaces and its application to surface analysis of semiconductors, glasses, and polymers, Anal. Chem., 1993, 65(5): 556

    Article  Google Scholar 

  66. J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. A. Zhang, R. Badugu, and J. Huang, Advances in surface-enhanced fluorescence, J. Fluoresc., 2004, 14(4): 425

    Article  Google Scholar 

  67. I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, and A. Lakhtakia, Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water, Appl. Phys. Lett., 2009, 94(6): 063106

    Article  ADS  Google Scholar 

  68. H. R. Stuart and D. G. Hall, Enhanced dipole-dipole interaction between elementary radiators near a surface, Phys. Rev. Lett., 1998, 80(25): 5663

    Article  ADS  Google Scholar 

  69. W. J. Padilla, D. N. Basov, and D. R. Smith, Negative refractive index metamaterials, Mater. Today, 2006, 9(7–8): 28

    Article  Google Scholar 

  70. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., 1999, 47(11): 2075

    Article  ADS  Google Scholar 

  71. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett., 2005, 95(13): 137404

    Article  ADS  Google Scholar 

  72. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science, 2008, 321(5891): 930

    Article  ADS  Google Scholar 

  73. Y. J. Jen, C. H. Chen, and C. W. Yu, Deposited metamaterial thin film with negative refractive index and permeability in the visible regime, Opt. Lett., 2011, 36(6): 1014

    Article  ADS  Google Scholar 

  74. Y. J. Jen, A. Lakhtakia, C. W. Yu, and Y. H. Wang, Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver, J. Vac. Sci. Technol. A, 2010, 28(5): 1078

    Article  Google Scholar 

  75. A. N. Lagarkov and A. K. Sarychev, Electromagnetic properties of composites containing elongated conducting inclusions, Phys. Rev. B, 1996, 53(10): 6318

    Article  ADS  Google Scholar 

  76. Y. J. Jen, A. Lakhtakia, C. W. Yu, J. J. Jhou, W. H. Wang, M. J. Lin, H. M. Wu, and H. S. Liao, Silver/silicon dioxide/silver sandwich films in the blue-to-red spectral regime with negative-real refractive index, Appl. Phys. Lett., 2011, 99(18): 181117

    Article  ADS  Google Scholar 

  77. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Metamaterial with negative index due to chirality, Phys. Rev. B, 2009, 79(3): 035407

    Article  ADS  Google Scholar 

  78. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Optical manifestations of planar chirality, Phys. Rev. Lett., 2003, 90(10): 107404

    Article  ADS  Google Scholar 

  79. M. Decker, M. W. Klein, M. Wegener, and S. Linden, Circular dichroism of planar chiral magnetic metamaterials, Opt. Lett., 2007, 32(7): 856

    Article  ADS  Google Scholar 

  80. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure, Phys. Rev. Lett., 2006, 97(17): 177401

    Article  ADS  Google Scholar 

  81. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, Strong optical activity from twisted-cross photonic metamaterials, Opt. Lett., 2009, 34(16): 2501

    Article  ADS  Google Scholar 

  82. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures, Phys. Rev. Lett., 2005, 95(22): 227401

    Article  ADS  Google Scholar 

  83. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett., 2010, 35(10): 1593

    Article  ADS  Google Scholar 

  84. B. Gallas, K. Robbie, R. Abdeddaïm, G. Guida, J. Yang, J. Rivory, and A. Priou, Silver square nanospirals mimic optical properties of U-shaped metamaterials, Opt. Express, 2010, 18(16): 16335

    Article  ADS  Google Scholar 

  85. B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, Nanostructured chiral silver thin films: A route to metamaterials at optical frequencies, Thin Solid Films, 2011, 519(9): 2650

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Fu, J. & Zhao, Y. Oblique angle deposition and its applications in plasmonics. Front. Phys. 9, 47–59 (2014). https://doi.org/10.1007/s11467-013-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0357-1

Keywords

Navigation