Skip to main content
Log in

Introduction to the CDEX experiment

  • Report
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg-PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and notes

  1. F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J., 1937, 86: 217

    Article  ADS  MATH  Google Scholar 

  2. V. Rubin and W. K. J. Ford, Rotation of the andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J., 1970, 159: 379

    Article  ADS  Google Scholar 

  3. V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4 kpc/ to UGC 2885 /R = 122 kpc/, Astrophys. J., 1980, 238: 471

    Article  ADS  Google Scholar 

  4. V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J., 1985, 289: 81

    Article  ADS  Google Scholar 

  5. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J., 2006, 648(2): L109

    Article  ADS  Google Scholar 

  6. J. Beringer, et al. [Particle Data Group], The review of particle physics, Phys. Rev. D, 2012, 86: 010001

    Article  ADS  Google Scholar 

  7. Planck Collaboration, Planck 2013 results. XVI. cosmological parameters, arXiv: 1303.5076v1, 2013

  8. V. Trimble, Existence and nature of dark matter in the universe, Annu. Rev. Astron. Astrophys., 1987, 25(1): 425

    Article  ADS  Google Scholar 

  9. G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep., 1996, 267(5–6): 195

    Article  ADS  Google Scholar 

  10. L. Bergstrom, Dark matter candidates, New J. Phys., 2009, 11(10): 105006

    Article  ADS  Google Scholar 

  11. J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904, 2010

    Google Scholar 

  12. R. J. Gaitskell, Direct detection of dark matter, Ann. Rev. Nucl. Part. Sci., 2004, 54(1): 315

    Article  ADS  Google Scholar 

  13. X.G. He, H. C. Tsai, T. Li, and X. Q. Li, Scalar darkmatter effects in Higgs and top quark decays, Mod. Phys. Lett. A, 2007, 22(25n28): 2121

    Article  ADS  Google Scholar 

  14. X. He, T. Li, X. Q. Li, J. Tandean, and H. C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D, 2009, 79(2): 023521

    Article  ADS  Google Scholar 

  15. A. Beylyaev, M. T. Frandsen, S. Sarkar, and F. Sannino, Mixed dark matter from Technicolor, Phys. Rev. D, 2011, 83(1): 015007, and the references therein

    Article  ADS  Google Scholar 

  16. H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D, 2010, 82: 023533, arXiv: 1004.3296

    Article  ADS  Google Scholar 

  17. J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D, 2012, 85: 096003, arXiv: 1110.6893

    Article  ADS  Google Scholar 

  18. M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys., 2011, 1103: 48, and references therein, arXiv: 1012.5288v2

    Article  ADS  Google Scholar 

  19. J. Lavalle, J. M. Alimi, and A. Fuözfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc., 2010, 24: 398

    Article  Google Scholar 

  20. R. Yang, J. Chang, and J. Wu, A possible explanation for the electron/positron excess of ATIC/PAMELA, Res. Astro. Astrophys., 2010, 10(1): 39, and references therein

    Article  ADS  Google Scholar 

  21. M. Amenomori, et al. [Tibet AS-gamma Collaboration], Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment, Astrophys. Space Sci. Trans., 2011, 7(1): 15

    Article  ADS  Google Scholar 

  22. M. Aguilar, et al. [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett., 2013, 110(14): 141102

    Article  ADS  Google Scholar 

  23. K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’Angelo, H. L. He, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, and Z. P. Ye, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C, 2008, 56(3): 333

    Article  ADS  Google Scholar 

  24. K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’Angelo, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, New results from DAMA/LIBRA, Eur. Phys. J. C, 2010, 67(1–2): 39

    Article  ADS  Google Scholar 

  25. C. Aalseth, P. S. Barbeau, N. S. Bowden, B. Cabrera-Palmer, et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett., 2011, 106(13): 131301

    Article  ADS  Google Scholar 

  26. P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey, et al., The cryogenic dark matter search (CDMS): Present status and future, AIP Conf. Proc., 2009, 1182: 260

    Article  ADS  Google Scholar 

  27. G. Angloher, et al. [CRESST Collaboration], Results from 730 kg days of the CRESST-II dark matter search, arXiv: 1109.0702, 2011

    Google Scholar 

  28. J. Angle, et al. [XENON10 Collaboration], Search for light dark matter in XENON10 data, Phys. Rev. Lett., 2011, 107: 051301

    Article  ADS  Google Scholar 

  29. R. Agnese, et al. [CDMS Collaboration], Dark matter search results using the silicon detectors of CDMS II, arXiv: 1304.4279v2, 2013

    Google Scholar 

  30. M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1, 2013

    Google Scholar 

  31. X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1, 2013

    Google Scholar 

  32. E. Aprile, et al. [XENON 100 Collaboration], Dark matter results from 225 live days of XENON100 data, arXiv: 1207.5988v2, 2013

    Google Scholar 

  33. J. Angle, et al. [XENON Collaboration], Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett., 2008, 101(9): 091301

    Article  ADS  Google Scholar 

  34. M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D, 1993, 48(12): 5519

    Article  ADS  Google Scholar 

  35. G. Griest, Cross-sections, relic abundance, and detection rates for neutralino dark matter, Phys. Rev. D, 1988, 15(8): 2357

    Article  ADS  Google Scholar 

  36. C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2, 2011

    Google Scholar 

  37. C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2, 2011

    Google Scholar 

  38. V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D, 2008, 78: 056007, arXiv: 0806.1962

    Article  ADS  Google Scholar 

  39. Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479

  40. M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D, 1993, 48(12): 5519

    Article  ADS  Google Scholar 

  41. M. T. Ressell and D. J. Dean, Spin-dependent neutralinonucleus scattering for A127 nuclei, Phys. Rev. C, 1997, 56(1): 535

    Article  ADS  Google Scholar 

  42. J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E, 1992, 1: 1

    Article  ADS  Google Scholar 

  43. J. Engel, Nuclear form factors for the scattering of weakly interacting massive particles, Phys. Lett. B, 1991, 264(1–2): 114

    MathSciNet  ADS  Google Scholar 

  44. Q. Yue, J. P. Cheng, Y. J. Li, J. Li, and Z. J. Wang, Detection of WIMPs using low threshold HPGe detector, High Energy Physics and Nuclear Physics, 2004, 28(8): 877 (in Chinese)

    Google Scholar 

  45. X. Li, Q. Yue, Y. J. Li, J. Li, et al., Status of ULE-HPGe detector experiment for dark matter search, High Energy Physics and Nuclear Physics, 2007, 31(6): 564 (in Chinese)

    Google Scholar 

  46. S. T. Lin, et al. [TEXONO Collaboration], New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D, 2009, 79(6): 061101 (R)

    ADS  Google Scholar 

  47. C. E. Aalseth, et al. [CoGeNT Collaboration], Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett., 2011, 106(13): 131301

    Article  ADS  Google Scholar 

  48. C. E. Aalseth, et al. [CoGeNT Collaboration], Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett., 2011, 107(14): 141301

    Article  ADS  Google Scholar 

  49. Majorana Collaboration, http://www.npl.washington.edu/majorana/

  50. GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/

  51. K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys.: Conf. Ser., 2010, 203(1): 012028

    Article  ADS  Google Scholar 

  52. D. Normile, Chinese scientists hope to make deepest, darkest dreams come true, Science, 2009, 324(5932): 1246

    Article  Google Scholar 

  53. G. Heusser, Low-radioactivity background techniques, Ann. Rev. Nucl. Part. Sci., 1995, 45(1): 543

    Article  ADS  Google Scholar 

  54. Canberra, http://www.canberra.com/

  55. Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn

  56. ORTEC, http://www.ortec-online.com

  57. Y. C. Wu, et al. [CDEX Collaboration], Measurement of cosmic ray flux in China Jinping underground laboratory, arXiv: 1305.0899, 2013

    Google Scholar 

  58. Saphymo, http://saphymo.de

  59. P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, Low capacitance large volume shaped-field germanium detector, IEEE Trans. Nucl. Sci., 1989, 36(1): 926

    Article  ADS  Google Scholar 

  60. P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys., 2007, 09: 009

    Article  ADS  Google Scholar 

  61. AMPTEK, http://www.amptek.com

  62. TEK, http://www.tek.com

  63. CDMS Collaboration, http://cdms.berkeley.edu

  64. XENON Collaboration, http://xenon.astro.columbia.edu

  65. CRESST Collaboration, http://www.cresst.de

  66. C. Aalseth, P. S. Barbeau, J. Colaresi, J. I. Collar, et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett., 2011, 107(14): 141301

    Article  ADS  Google Scholar 

  67. M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington, 2010

    Google Scholar 

  68. From a talk given by J. F. Wilkerson in Tsinghua University in 2011

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Xue-Qian Li or Qing Wang.

Additional information

Participate as TEXONO members.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, KJ., Cheng, JP., Li, J. et al. Introduction to the CDEX experiment. Front. Phys. 8, 412–437 (2013). https://doi.org/10.1007/s11467-013-0349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0349-1

Keywords

Navigation