Skip to main content
Log in

Hierarchical nanowires for high-performance electrochemical energy storage

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Nanowires are promising candidates for energy storage devices such as lithium-ion batteries, supercapacitors and lithium-air batteries. However, simple-structured nanowires have some limitations hence the strategies to make improvements need to be explored and investigated. Hierarchical nanowires with enhanced performance have been considered as an ideal candidate for energy storage due to the novel structures and/or synergistic properties. This review describes some of the recent progresses in the hierarchical nanowire merits, classification, synthesis and performance in energy storage applications. Herein we discuss the hierarchical nanowires based on their structural design from three major categories, including exterior design, interior design and aligned nanowire assembly. This review also briefly outlines the prospects of hierarchical nanowires in morphology control, property enhancement and application versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652

    ADS  Google Scholar 

  2. D. R. Rolison and L. F. Nazar, Electrochemical energy storage to power the 21st century, MRS Bull., 2011, 36(07): 486

    Google Scholar 

  3. S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294

    ADS  Google Scholar 

  4. B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 2010, 195(9): 2419

    Google Scholar 

  5. M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 2012, 5(7): 7854

    Google Scholar 

  6. J. Liu, Addressing the grand challenges in energy storage, Adv. Funct. Mater., 2013, 23(8): 924

    Google Scholar 

  7. L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967

    ADS  Google Scholar 

  8. T. Nagaura and K. Tozawa, Lithium ion rechargeable battery, Progress in Batteries and Solar Cells, 1990, 9: 209

    Google Scholar 

  9. B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928

    ADS  Google Scholar 

  10. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19

    ADS  Google Scholar 

  11. C. Bai and M. Liu, From chemistry to nanoscience: Not just a matter of size, Angew. Chem. Int. Ed., 2013, 52(10): 2678

    Google Scholar 

  12. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47(16): 2930

    Google Scholar 

  13. J. Thomas, Lithium batteries: A spectacularly reactive cathode, Nat. Mater., 2003, 2(11): 705

    ADS  Google Scholar 

  14. A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366

    ADS  Google Scholar 

  15. J. B. Goodenough, Cathode materials: A personal perspective, J. Power Sources, 2007, 174(2): 996

    Google Scholar 

  16. L. Q.Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, B. Hu, Y. Z. Luo, and H. Y. Liu, Molybdenum oxide nanowires: Synthesis & properties, Mater. Today, 2011, 14(7–8): 346

    Google Scholar 

  17. M. Hu, X. Pang, and Z. Zhou, Recent progress in highvoltage lithium ion batteries, J. Power Sources, 2013, 237: 229

    Google Scholar 

  18. C. M. Lieber, One-dimensional nanostructures: Chemistry, physics & applications, Solid State Commun., 1998, 107(11): 607

    ADS  Google Scholar 

  19. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater., 2003, 15(5): 353

    Google Scholar 

  20. A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev., 2010, 110(1): 527

    Google Scholar 

  21. X. Duan and C. M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater., 2000, 12(4): 298

    Google Scholar 

  22. P. Yang, R. Yan, and M. Fardy, Semiconductor nanowire: What’s next? Nano Lett., 2010, 10(5): 1529

    ADS  Google Scholar 

  23. T. J. Kempa, R. W. Day, S.K. Kim, H.G. Park, and C. M. Lieber, Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells, Energy Environ. Sci., 2013, 6(3): 719

    Google Scholar 

  24. J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359

    ADS  Google Scholar 

  25. L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. Lao, R. Yang, Y. Dai, and Z. L. Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater., 2007, 19(21): 3712

    Google Scholar 

  26. X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. Zhang, J. Li, T. Zhu, and J. Y. Huang, In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotechnol., 2012, 7(11): 749

    ADS  Google Scholar 

  27. M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034

    Google Scholar 

  28. R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390

    Google Scholar 

  29. A. R. Armstrong, C. Lyness, P. M. Panchmatia, M. S. Islam, and P. G. Bruce, The lithium intercalation process in the low-voltage lithium battery anode Li1+x V1−x O2, Nat. Mater., 2011, 10(3): 223

    ADS  Google Scholar 

  30. M. Pharr, K. Zhao, X. Wang, Z. Suo, and J. J. Vlassak, Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries, Nano Lett., 2012, 12(9): 5039

    ADS  Google Scholar 

  31. Y. Yang, C. Xie, R. Ruffo, H. Peng, K. Kim, and Y. Cui, Single nanorod devices for battery diagnostics: A case study on LiMn2O4, Nano Lett., 2009, 9(12): 4109

    ADS  Google Scholar 

  32. L. Q. Mai, Y. J. Dong, L. Xu, and C. H. Han, Single nanowire electrochemical devices, Nano Lett., 2010, 10(10): 4273

    ADS  Google Scholar 

  33. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515

    ADS  Google Scholar 

  34. R. Liu, J. Duay, and S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Commun., 2010, 47(5): 1384

    Google Scholar 

  35. X. Liu, Y. Lin, S. Zhou, S. Sheehan, and D. Wang, Complex nanostructures: Synthesis and energetic applications, Energies, 2010, 3(3): 285

    Google Scholar 

  36. C. Cheng and H. J. Fan, Branched nanowires: Synthesis and energy applications, Nano Today, 2012, 7(4): 327

    Google Scholar 

  37. H. Li, A. G. Kanaras, and L. Manna, Colloidal branched semiconductor nanocrystals: State of the art and perspectives, Acc. Chem. Res., 2013, doi:10.1021/ar3002409

    Google Scholar 

  38. S. K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K. D. Song, H. G. Park, and C. M. Lieber, Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design, Nano Lett., 2012, 12(9): 4971

    ADS  Google Scholar 

  39. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Solutionprocessed core-shell nanowires for efficient photovoltaic cells, Nat. Nanotechnol., 2011, 6(9): 568

    ADS  Google Scholar 

  40. B. Tian, T. J. Kempa, and C. M. Lieber, Single nanowire photovoltaics, Chem. Soc. Rev., 2009, 38(1): 16

    Google Scholar 

  41. Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties, Nano Lett., 2012, 12(3): 1678

    ADS  Google Scholar 

  42. Y. J. Hwang, A. Boukai, and P. D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity, Nano Lett., 2009, 9(1): 410

    ADS  Google Scholar 

  43. C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, and Z. L. Wang, Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect, Nano Lett., 2012, 12(6): 3302

    Google Scholar 

  44. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Coaxial group III-nitride nanowire photovoltaics, Nano Lett., 2009, 9(5): 2183

    ADS  Google Scholar 

  45. F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire, ACS Nano, 2012, 6(10): 9229

    Google Scholar 

  46. T. J. Kempa, J. F. Cahoon, S. K. Kim, R. W. Day, D. C. Bell, H. G. Park, and C. M. Lieber, Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics, Proc. Natl. Acad. Sci. USA, 2012, 109(5): 1407

    ADS  Google Scholar 

  47. B. Z. Tian and C. M. Lieber, Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes, Pure Appl. Chem., 2011, 83(12): 2153

    Google Scholar 

  48. Y. Hu, J. Xiang, G. Liang, H. Yan, and C. M. Lieber, Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed, Nano Lett., 2008, 8(3): 925

    ADS  Google Scholar 

  49. Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect, Nano Lett., 2013, 13(2): 607

    ADS  Google Scholar 

  50. H. Peng, C. Xie, D. T. Schoen, K. McIlwrath, X. F. Zhang, and Y. Cui, Ordered vacancy compounds and nanotube formation in CuInSe2-CdS coreshell nanowires, Nano Lett., 2007, 7(12): 3734

    ADS  Google Scholar 

  51. G. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, and M. Lundstrom, Performance analysis of a Ge/Si core/shell nanowire field-effect transistor, Nano Lett., 2007, 7(3): 642

    ADS  Google Scholar 

  52. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57

    ADS  Google Scholar 

  53. Y. Hu, F. Kuemmeth, C. M. Lieber, and C. M. Marcus, Hole spin relaxation in Ge-Si core-shell nanowire qubits, Nat. Nanotechnol., 2012, 7(1): 47

    ADS  Google Scholar 

  54. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, 2007, 449(7164): 885

    ADS  Google Scholar 

  55. Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches, Nano Lett., 2008, 8(2): 386

    ADS  Google Scholar 

  56. Y. Hu, H. O. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor, Nat. Nanotechnol., 2007, 2(10): 622

    ADS  Google Scholar 

  57. T. Mokari, S. E. Habas, M. Zhang, and P. Yang, Synthesis of lead chalcogenide alloy and core-shell nanowires, Angew. Chem. Int. Ed., 2008, 47(30): 5605

    Google Scholar 

  58. C. R. Ghosh and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 2012, 112(4): 2373

    Google Scholar 

  59. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, and Z. Guo, Multifunctional composite core-shell nanoparticles, Nanoscale, 2011, 3(11): 4474

    ADS  Google Scholar 

  60. W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo, and L. J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater., 2008, 18(24): 3941

    Google Scholar 

  61. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett., 2009, 9(3): 1002

    ADS  Google Scholar 

  62. B. Luo, B. Wang, M. Liang, J. Ning, X. Li, and L. Zhi, Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties, Adv. Mater., 2012, 24(11): 1405

    Google Scholar 

  63. S. M. Yuan, J. X. Li, L. T. Yang, L. W. Su, L. Liu, and Z. Zhou, Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules, ACS Appl. Mater. Interfaces, 2011, 3(3): 705

    Google Scholar 

  64. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc-Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310

    ADS  Google Scholar 

  65. D. W. Kim, I. S. Hwang, S. J. Kwon, H. Y. Kang, K. S. Park, Y. J. Choi, K. J. Choi, and J. G. Park, Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes, Nano Lett., 2007, 7(10): 3041

    ADS  Google Scholar 

  66. L. Q. Mai, X. Xu, C. H. Han, Y. Z. Luo, L. Xu, Y. A. Wu, and Y. L. Zhao, Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property, Nano Lett., 2011, 11(11): 4992

    ADS  Google Scholar 

  67. S. Li, C. H. Han, L. Q. Mai, J. H. Han, X. Xu, and Y. Q. Zhu, Rational synthesis of coaxial MoO3/PTh nanowires with improved electrochemical cyclability, Int. J. Electrochem. Sci., 2011, 6: 4504

    Google Scholar 

  68. L. Q. Mai, F. Dong, X. Xu, Y. Z. Luo, Q. Y. An, Y. L. Zhao, J. Pan, and J. N. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability, Nano Lett., 2013, 13(2): 740

    ADS  Google Scholar 

  69. R. Liu and S. B. Lee, MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc., 2008, 130(10): 2942

    MathSciNet  Google Scholar 

  70. X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Q. Mai, and C. M. Lieber, Rational growth of branched nanowire heterostructures with synthetically encoded properties and function, Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12212

    Google Scholar 

  71. B. Tian, P. Xie, T. J. Kempa, D. C. Bell, and C. M. Lieber, Single-crystalline kinked semiconductor nanowire superstructures, Nat. Nanotechnol., 2009, 4(12): 824

    ADS  Google Scholar 

  72. S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell, Nano Lett., 2011, 11(2): 666

    ADS  Google Scholar 

  73. J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, Three-dimensional battery architectures, Chem. Rev., 2004, 104(10): 4463

    Google Scholar 

  74. W. Zhou, C. Cheng, J. Liu, Y. Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H. H. Hng, T. Yu, and H. J. Fan, Epitaxial growth of branched -Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance, Adv. Funct. Mater., 2011, 21(13): 2439

    Google Scholar 

  75. J. Liu, J. Jiang, M. Bosman, and H. J. Fan, Threedimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem., 2012, 22(6): 2419

    Google Scholar 

  76. J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, and H. J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials, Adv. Mater., 2011, 23(18): 2076

    Google Scholar 

  77. L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, and O. G. Schmidt, Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries, Adv. Mater., 2013, 25(8): 1180

    Google Scholar 

  78. J. Zhao, Z. Lu, M. Shao, D. Yan, M. Wei, D. G. Evans, and X. Duan, Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for highperformance supercapacitors, RSC Adv., 2012, 3(4): 1045

    Google Scholar 

  79. S. Zhou, X. Yang, Y. Lin, J. Xie, and D. Wang, A nanonetenabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime, ACS Nano, 2012, 6(1): 919

    Google Scholar 

  80. S. He, X. Hu, S. Chen, H. Hu, M. Hanif, and H. Hou, Needlelike polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors, J. Mater. Chem., 2012, 22(11): 5114

    Google Scholar 

  81. J. G. Kim, S. H. Nam, S. H. Lee, S. M. Choi, and W. B. Kim, SnO2 nanorod-planted graphite: An effective nanostructure configuration for reversible lithium ion storage, ACS Appl. Mater. Interfaces, 2011, 3(3): 828

    Google Scholar 

  82. L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, and Y. Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun., 2011, 2: 381

    ADS  Google Scholar 

  83. F. Schüth, Non-siliceous mesostructured and mesoporous materials, Chem. Mater., 2001, 13(10): 3184

    Google Scholar 

  84. M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417(6891): 813

    ADS  Google Scholar 

  85. F. Schüth and W. Schmidt, Microporous and mesoporous materials, Adv. Eng. Mater., 2002, 4(5): 269

    Google Scholar 

  86. C. Liang, Z. Li, and S. Dai, Mesoporous carbon materials: Synthesis and modification, Angew. Chem. Int. Ed., 2008, 47(20): 3696

    Google Scholar 

  87. A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97(6): 2373

    Google Scholar 

  88. J. Lee, J. Kim, and T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 2006, 18(16): 2073

    Google Scholar 

  89. F. D. Wu and Y. Wang, Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries, J. Mater. Chem., 2011, 21(18): 6636

    Google Scholar 

  90. H. Jiang, J. Ma, and C. Li, Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors, Chem. Commun., 2012, 48(37): 4465

    Google Scholar 

  91. D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, Q. Zhang, J. Li, and G. Cao, Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ionstorage properties by electrospinning, Energy Environ. Sci., 2011, 4(3): 858

    Google Scholar 

  92. L. Q. Mai, L. Xu, C. H. Han, X. Xu, Y. Z. Luo, S. Y. Zhao, and Y. L. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries, Nano Lett., 2010, 10(11): 4750

    ADS  Google Scholar 

  93. Y. L. Zhao, L. Xu, L. Q. Mai, C. H. Han, Q. Y. An, X. Xu, X. Liu, and Q. J. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Liair batteries, Proc. Natl. Acad. Sci. USA, 2012, 109(48): 19569

    ADS  Google Scholar 

  94. G. M. Koenig, Jr., I. Belharouak, H. X. Deng, Y. K. Sun, and K. Amine, Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials, Chem. Mater., 2011, 23(7): 1954

    Google Scholar 

  95. Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak, and K. Amine, High-energy cathode material for long-life and safe lithium batteries, Nat. Mater., 2009, 8(4): 320

    ADS  Google Scholar 

  96. Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, and K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater., 2012, 11(11): 942

    ADS  Google Scholar 

  97. R. Krishnan, T. M. Lu, and N. Koratkar, Functionally strain-graded nanoscoops for high power Li-ion battery anodes, Nano Lett., 2011, 11(2): 377

    ADS  Google Scholar 

  98. J. Jiang, Y. Li, J. Liu, and X. Huang, Building onedimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 2011, 3(1): 45

    ADS  Google Scholar 

  99. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31

    ADS  Google Scholar 

  100. P. Meduri, E. Clark, J. H. Kim, E. Dayalan, G. U. Sumanasekera, and M. K. Sunkara, MoO3−x nanowire arrays as stable and high-capacity anodes for lithium ion batteries, Nano Lett., 2012, 12(4): 1784

    ADS  Google Scholar 

  101. S. Chen, M. Wang, J. Ye, J. Cai, Y. Ma, H. Zhou, and L. Qi, Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance, Nano Res., 2013, 6(4): 243

    Google Scholar 

  102. K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, Highperformance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays, Adv. Mater., 2013, 25(10): 1494

    Google Scholar 

  103. L. Shen, E. Uchaker, X. Zhang, and G. Cao, Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries, Adv. Mater., 2012, 24(48): 6502

    Google Scholar 

  104. F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan, and Y. G. Guo, Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries, Adv. Mater., 2011, 23(38): 4415

    Google Scholar 

  105. C. H. Han, Y. Q. Pi, Q. Y. An, L. Q. Mai, J. L. Xie, X. Xu, L. Xu, Y. L. Zhao, C. J. Niu, A. M. Khan, and X. He, Substrate-assisted self-organization of radial -AgVO3 nanowire clusters for high rate rechargeable lithium batteries, Nano Lett., 2012, 12(9): 4668

    ADS  Google Scholar 

  106. L. Q. Mai, Y. H. Gu, C. H. Han, B. Hu, W. Chen, P. Zhang, L. Xu,W. L. Guo, and Y. Dai, Orientated Langmuir-Blodgett assembly of VO2 nanowires, Nano Lett., 2009, 9(2): 826

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen  (陈伟) or Li-Qiang Mai  (麦立强).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Dong, YF., Wang, DD. et al. Hierarchical nanowires for high-performance electrochemical energy storage. Front. Phys. 9, 303–322 (2014). https://doi.org/10.1007/s11467-013-0343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0343-7

Keywords

Navigation