Skip to main content
Log in

DNA condensation and size effects of DNA condensation agent

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. V. Hud and I. D. Vilfan, Toroidal DNA condensates: Un raveling the fine structure and the role of nucleation in determining size, Annu. Rev. Biophys. Biomol. Struct., 2005, 34: 295

    Article  Google Scholar 

  2. V. A. Bloomfield, DNA condensation, Curr. Opin. Struct. Biol., 1996, 6(3): 334

    Article  Google Scholar 

  3. A. Leforestier, A. Siber, F. Livolant, and R. Podgornik, Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids, Biophys. J., 2011, 100: 2209

    Article  ADS  Google Scholar 

  4. Z. Y. Ou and M. Muthukumar, Langevin dynamics of semi-flexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution, J. Chem. Phys., 2005, 123(7): 074905

    Article  ADS  Google Scholar 

  5. W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, V. A. Parsegian, and W. J. Johnson, DNA-inspired electrostatics, Phys. Today, 2000, 53: 38

    Article  Google Scholar 

  6. B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Dynamical intermediates in the collapse of semiflexible polymers in poor solvents, Europhys. Lett., 2000, 51: 279

    Article  ADS  Google Scholar 

  7. W. B. Fu, X. L. Wang, X. H. Zhang, S. Y. Ran, J. Yan, and M. Li, Compaction dynamics of single DNA molecules under tension, J. Am. Chem. Soc., 2006, 128(47): 15040

    Article  Google Scholar 

  8. F. Oosawa, Interaction between parallel rodlike macroions, Biopolymers, 1968, 6(11): 1633

    Article  Google Scholar 

  9. G. S. Manning, Limiting laws and counterion condensation in polyelectrolyte solutions (i): Colligative properties, J. Chem. Phys., 1969, 51(3): 924

    Article  ADS  Google Scholar 

  10. B. Y. Ha and A. J. Liu, Counterion-mediated attraction between two like-charged rods, Phys. Rev. Lett., 1997, 79(7): 1289

    Article  ADS  Google Scholar 

  11. I. Rouzina and V. A. Bloomfield, Macroion attraction due to electrostatic correlation between screening counterions (1): Mobile surface-adsorbed ions and diffuse ion cloud, J. Phys. Chem., 1996, 100(23): 9977

    Article  Google Scholar 

  12. Y. Levin, J. J. Arenzon, and J. F. Stilck, The nature of attraction between like-charged rods, Phys. Rev. Lett., 1999, 83(13): 2680

    Article  ADS  Google Scholar 

  13. A. A. Kornyshev and S. Leikin, Electrostatic zipper motif for DNA aggregation, Phys. Rev. Lett., 1999, 82(20): 4138

    Article  ADS  Google Scholar 

  14. K. Besteman, S. Hage, N. H. Dekker, and S. G. Lemay, Role of tension and twist in single-molecule DNA condensation, Phys. Rev. Lett., 2007, 98(5): 058103

    Article  ADS  Google Scholar 

  15. K. Besteman, K. Van Eijk, and S. G. Lemay, Charge inversion accompanies DNA condensation by multivalent ions, Nat. Phys., 2007, 3(9): 641

    Article  Google Scholar 

  16. F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante, Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers, Phys. Rev. Lett., 2006, 96(11): 118301

    Article  ADS  Google Scholar 

  17. W. K. Kim and W. Sung, Charge density coordination and dynamics in a rodlike polyelectrolyte, Phys. Rev. E, 2008, 78(2): 021904

    Article  ADS  Google Scholar 

  18. L. Dai, Y. G. Mu, L. Nordenskiöld, and J. R. van der Maarel, Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules, Phys. Rev. Lett., 2008, 100(11): 118301

    Article  ADS  Google Scholar 

  19. F. Oosawa, Polyelectrolyte, New York: Marcel Dekker, INC, 1971

    Google Scholar 

  20. J. Barrat and J. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge: Cambridge University Press, 2003

    Book  Google Scholar 

  21. Y. H. Liu and L. Hu, Monte Carlo simulation on topology of DNA minicircles, Chinese J. Comput. Phys., 2009, 26: 152 (in Chinese)

    MathSciNet  Google Scholar 

  22. J. Marko, Introduction to single-DNA micromechanics in multiple aspects of DNA and RNA from biophysics to bioinformatics Les Houches Session LXXXII, Elsevier, 2005

    Google Scholar 

  23. L. S. Lerman, L. S. Wilkerson, J. H. Venable, Jr, and B. H. Robinson, DNA packing in single crystals inferred from freeze-fracture-etch replicas, J. Mol. Biol., 1976, 108(2): 271

    Article  Google Scholar 

  24. J. A. Schellman and N. Parthasarathy, X-ray diffraction studies on cation-collapsed DNA, J. Mol. Biol., 1984, 175: 313

    Article  Google Scholar 

  25. H. Deng and V. A. Bloomfield, Structural effects of cobaltamine compounds on DNA condensation, Biophys. J., 1999, 77(3): 1556

    Article  Google Scholar 

  26. G. E. Plum, P. G. Arscott, and V. A. Bloomfield, Condensation of DNA by trivalent cations (2): Effects of cation structure, Biopolymers, 1990, 30(5–6): 631

    Article  Google Scholar 

  27. J. Widom and R. L. Baldwin, Monomolecular condensation of lambda-DNA induced by cobalt hexamine, Biopolymers, 1983, 22(6): 1595

    Article  Google Scholar 

  28. J. A. Benbasat, Condensation of bacteriophage phi W14 DNA of varying charge densities by trivalent counterions, Biochemistry, 1984, 23(16): 3609

    Article  Google Scholar 

  29. A. M. Carnerup, M. L. Ainalem, V. Alfredsson, and T. Nylander, Watching DNA condensation induced by poly (amido amine) dendrimer with time-resolved cryo-TEM, Langmuir, 2009, 25(21): 12466

    Article  Google Scholar 

  30. G. S. Manning, The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force, Biophys. J., 2006, 91(10): 3607

    Article  ADS  Google Scholar 

  31. S. Geggier, A. Kotlyar, and A. Vologodskii, Temperature dependence of DNA persistence length, Nucleic Acids Res., 2011, 39(4): 1427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hui Liu or Lin Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YH., Jiang, CM., Guo, XM. et al. DNA condensation and size effects of DNA condensation agent. Front. Phys. 8, 467–471 (2013). https://doi.org/10.1007/s11467-013-0342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0342-8

Keywords

Navigation