Skip to main content
Log in

Structural and elastic properties of Ce2O3 under pressure from LDA+U method

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We investigate the structural and elastic properties of hexagonal Ce2O3 under pressure using LDA+U scheme in the frame of density functional theory (DFT). The obtained lattice constants and bulk modulus agree well with the available experimental and other theoretical data. The pressure dependences of normalized lattice parameters a/a 0 and c/c 0, ratio c/a, and normalized primitive volume V/V 0 of Ce2O3 are obtained. Moreover, the pressure dependences of elastic properties and three anisotropies of elastic waves of Ce2O3 are investigated for the first time. We find that the negative value of C 44 is indicative of the structural instability of the hexagonal structure Ce2O3 at zero temperature and 30 GPa. Finally, the density of states (DOS) of Ce2O3 under pressure is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002

    Google Scholar 

  2. M. Kobayashi, and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B, 1991, 61(4): 491

    Article  ADS  Google Scholar 

  3. H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 1985, 131(2–3): 221

    Article  ADS  Google Scholar 

  4. J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2 O3, J. Chem. Theory Comput., 2011, 7(1): 5

    Article  Google Scholar 

  5. T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, First-principles study of dielectric properties of cerium oxide, Thin Solid Films, 2005, 486(1–2): 136

    Article  ADS  Google Scholar 

  6. O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 1963, 24(7): 909

    Article  ADS  Google Scholar 

  7. A. I. Shelykh, A. V. Prokofiev, and B. T. Melekh, Fiz. Tverd. Tela, 1996, 38: 91

    Google Scholar 

  8. A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series, J. Alloy. Comp., 1996, 242(1–2): 41

    Article  Google Scholar 

  9. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B, 1991, 44(3): 943

    Article  ADS  Google Scholar 

  10. D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2 O3, and CeO2tx in the LDA+U formalism, Phys. Rev. B, 2007, 75(3): 035109

    Article  ADS  Google Scholar 

  11. C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+ U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B, 2007, 75(3): 035115

    Article  ADS  Google Scholar 

  12. J. L. F. Da Silva, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B, 2007, 76(19): 193108

    Article  ADS  Google Scholar 

  13. L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges, Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications, Phys. Rev. B, 2007, 76(23): 235101

    Article  ADS  Google Scholar 

  14. B. Amadon, A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT + U, J. Phys.: Condens. Matter, 2012, 24(7): 075604

    Article  ADS  Google Scholar 

  15. H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett., 2009, 102(12): 126403

    Article  ADS  Google Scholar 

  16. P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 2006, 125(3): 034712

    Article  ADS  Google Scholar 

  17. A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys., 1993, 98(2): 1372

    Article  ADS  Google Scholar 

  18. J. L. F. Da Silva, M. V. Ganduglia-Pirovano, and J. Sauer, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B, 2007, 76(19): 193108

    Article  Google Scholar 

  19. M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, 64(4): 1045

    Article  ADS  Google Scholar 

  20. V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem., 2000, 77(5): 895

    Article  Google Scholar 

  21. S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 1980, 58(8): 1200

    Article  ADS  Google Scholar 

  22. H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188

    Article  MathSciNet  ADS  Google Scholar 

  23. D. C. Wallace, Thermodynamics of Crystals, New York: Wiley, 1972

    Google Scholar 

  24. W. Voigt, Lehrbuch der Kristallphysik, Leipzig: Taubner, 1928

    MATH  Google Scholar 

  25. A. Reuss, Berechnung der Fließerenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech., 1929, 9(1): 49

    Article  MATH  Google Scholar 

  26. K. B. Panda, and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci., 2006, 35(2): 134

    Article  Google Scholar 

  27. Y. J. Hao, X. R. Chen, H. L. Cui, and Y. L. Bai, Firstprinciples calculations of elastic constants of c-BN, Physica B, 2006, 382(1–2): 118

    Article  ADS  Google Scholar 

  28. Z. L. Liu, X. R. Chen, and Y. L. Wang, First-principles calculations of elastic properties of LiBC, Physica B, 2006, 381(1–2): 139

    Article  ADS  Google Scholar 

  29. X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfê, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter, 2009, 21(2): 025505

    Article  ADS  Google Scholar 

  30. X. L. Yuan, D. Q. Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comput. Mater. Sci., 2012, 58: 125

    Google Scholar 

  31. P. Wang, C. G. Piao, R. Y. Meng, Y. Cheng, and G. F. Ji, Elastic and electronic properties of YNi2B2C under pressure from first principles, Physica B, 2012, 407: 227

    Article  ADS  Google Scholar 

  32. P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloy. Comp., 2012, 526: 74

    Article  Google Scholar 

  33. H. Barnighausen and G. Schiller, The crystal structure of A-Ce2O3, J. Less Common Met., 1985, 110(1–2): 385

    Article  Google Scholar 

  34. F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809

    Article  ADS  MATH  Google Scholar 

  35. G. V. Sin’ko and N. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter, 2002, 14(29): 6989

    Article  ADS  Google Scholar 

  36. S. F. Pugh, Philos. Mag., 1954, 45: 833

    Google Scholar 

  37. M. A. Auld, Acoustic Fields and Waves in Solids, Vol. I, New York: Wiley, 1973

    Google Scholar 

  38. G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Firstprinciples elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B, 1999, 60(2): 791

    Article  ADS  Google Scholar 

  39. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, YY., Niu, ZW., Cheng, C. et al. Structural and elastic properties of Ce2O3 under pressure from LDA+U method. Front. Phys. 8, 405–411 (2013). https://doi.org/10.1007/s11467-013-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0331-y

Keywords

Navigation