Skip to main content
Log in

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Annu. Rev. Mater. Res., 2011, 41(1): 269

    Article  ADS  Google Scholar 

  2. A. I. Hochbaum and P. Yang, Chem. Rev., 2010, 110(1): 527

    Article  Google Scholar 

  3. B.M. Kayes, H.A. Atwater, and N. S. Lewis, J. Appl. Phys., 2005, 97(11): 114302

    Article  ADS  Google Scholar 

  4. L. Hu and G. Chen, Nano Lett., 2007, 7(11): 3249

    Article  ADS  Google Scholar 

  5. E. Garnett and P. Yang, Nano Lett., 2010, 10(3): 1082

    Article  ADS  Google Scholar 

  6. N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, Adv. Funct. Mater., 2012, 22(17): 3650

    Article  Google Scholar 

  7. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Nano Lett., 2008, 8(9): 2638

    Article  ADS  Google Scholar 

  8. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett., 2007, 91(23): 233117

    Article  ADS  Google Scholar 

  9. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt. Res. Appl., 2012, 20(5): 606

    Article  Google Scholar 

  10. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 2005, 5(7): 1231

    Article  ADS  Google Scholar 

  11. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Inorg. Chem., 2006, 45(19): 7535

    Article  Google Scholar 

  12. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater., 2005, 4(6): 455

    Article  ADS  Google Scholar 

  13. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104(5): 949

    Article  Google Scholar 

  14. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, J. Phys. Chem. B, 2006, 110(45): 22652

    Article  Google Scholar 

  15. L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, J. Phys. Chem. C, 2007, 111(50): 18451

    Article  Google Scholar 

  16. B. D. Yuhas and P. D. Yang, J. Am. Chem. Soc., 2009, 131(10): 3756

    Article  Google Scholar 

  17. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater., 2010, 9(3): 239

    ADS  Google Scholar 

  18. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nano Lett., 2010, 10(6): 1979

    Article  ADS  Google Scholar 

  19. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett., 2009, 9(1): 279

    Article  ADS  Google Scholar 

  20. E. Yablonovitch and G. D. Cody, IEEE Trans. Electron. Dev., 1982, 29(2): 300

    Article  ADS  Google Scholar 

  21. M. G. Mauk, J. Miner. Met. Mater. Soc., 2003, 55(5): 38

    Article  Google Scholar 

  22. A. Boukai, P. Haney, A. Katzenmeyer, G. M. Gallatin, A. A. Talin, and P. Yang, Chem. Phys. Lett., 2011, 501(4–6): 153

    Article  ADS  Google Scholar 

  23. B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Rev., 2009, 38(1): 16

    Article  Google Scholar 

  24. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Nano Lett., 2008, 8(2): 710

    Article  ADS  Google Scholar 

  25. B. Z. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 2007, 449(7164): 885

    Article  ADS  Google Scholar 

  26. S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nat. Mater., 2009, 8(10): 818

    Article  ADS  Google Scholar 

  27. A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, and P. Yang, Nano Lett., 2010, 10(1): 334

    Article  ADS  Google Scholar 

  28. J. A. Czaban, D. A. Thompson, and R. R. Lapierre, Nano Lett., 2009, 9(1): 148

    Article  ADS  Google Scholar 

  29. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Nat. Nanotechnol., 2011, 6(9): 568

    Article  ADS  Google Scholar 

  30. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Nano Lett., 2010, 10(2): 439

    Article  ADS  Google Scholar 

  31. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Nat. Mater., 2009, 8(8): 643

    Article  ADS  Google Scholar 

  32. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett., 2008, 8(12): 4391

    Article  ADS  Google Scholar 

  33. K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett., 2008, 93(12): 121904

    Article  ADS  Google Scholar 

  34. H. A. Atwater and A. Polman, Nat. Mater., 2010, 9(3): 205

    Article  ADS  Google Scholar 

  35. S. Brittman, H. Gao, E. C. Garnett, and P. Yang, Nano Lett., 2011, 11(12): 5189

    Article  ADS  Google Scholar 

  36. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15729

    Article  ADS  Google Scholar 

  37. A. Listorti, J. Durrant, and J. Barber, Nat. Mater., 2009, 8(12): 929

    Article  ADS  Google Scholar 

  38. P. Yang, MRS Bull., 2012, 37(9): 806

    Article  Google Scholar 

  39. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev., 2010, 110(11): 6446

    Article  Google Scholar 

  40. A. Fujishima and K. Honda, Nature, 1972, 238(5358): 37

    Article  ADS  Google Scholar 

  41. A. J. Nozik, Appl. Phys. Lett., 1976, 29(3): 150

    Article  ADS  Google Scholar 

  42. K. Ohashi, J. Mccann, and J. O. M. Bockris, Nature, 1977, 266(5603): 610

    Article  ADS  Google Scholar 

  43. A. Kudo, MRS Bull., 2011, 36(1): 32

    Article  Google Scholar 

  44. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, Science, 2010, 327(5962): 185

    Article  ADS  Google Scholar 

  45. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, J. Am. Chem. Soc., 2011, 133(5): 1216

    Article  Google Scholar 

  46. A. Heller, E. Aharon-Shalom, W. A. Bonner, and B. Miller, J. Am. Chem. Soc., 1982, 104(25): 6942

    Article  Google Scholar 

  47. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, and I. Chorkendorff, Nat. Mater., 2011, 10(6): 434

    Article  ADS  Google Scholar 

  48. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc., 2005, 127(15): 5308

    Article  Google Scholar 

  49. M. Tomkiewicz and J. M. Woodall, Science, 1977, 196(4293): 990

    Article  ADS  Google Scholar 

  50. J. Sun, C. Liu, and P. Yang, J. Am. Chem. Soc., 2011, 133(48): 19306

    Article  Google Scholar 

  51. C. Liu, J. Sun, J. Tang, and P. Yang, Nano Lett., 2012, 12(10): 5407

    Article  ADS  Google Scholar 

  52. Y. J. Hwang, C. Hahn, B. Liu, and P. Yang, ACS Nano, 2012, 6(6): 5060

    Article  Google Scholar 

  53. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, Chem. Sci., 2011, 2(4): 737

    Article  Google Scholar 

  54. Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Nat. Mater., 2011, 10(7): 539

    Article  ADS  Google Scholar 

  55. Y. J. Hwang, A. Boukai, and P. D. Yang, Nano Lett., 2009, 9(1): 410

    Article  ADS  Google Scholar 

  56. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Nat. Mater., 2007, 6(12): 951

    Article  ADS  Google Scholar 

  57. Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Nano Lett., 2012, 12(3): 1678

    Article  ADS  Google Scholar 

  58. C. Liu, Y. J. Hwang, H. E. Jeong, and P. Yang, Nano Lett., 2011, 11(9): 3755

    Article  ADS  Google Scholar 

  59. P. Yang and J. M. Tarascon, Nat. Mater., 2012, 11(7): 560

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, N.P., Yang, P. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. Front. Phys. 9, 289–302 (2014). https://doi.org/10.1007/s11467-013-0305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0305-0

Keywords

Navigation