Skip to main content
Log in

Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, an approach based on the fast point-in-polygon (PIP) algorithm and trimmed elements is proposed for isogeometric topology optimization (TO) with arbitrary geometric constraints. The isogeometric parameterized level-set-based TO method, which directly uses the non-uniform rational basis splines (NURBS) for both level set function (LSF) parameterization and objective function calculation, provides higher accuracy and efficiency than previous methods. The integration of trimmed elements is completed by the efficient quadrature rule that can design the quadrature points and weights for arbitrary geometric shape. Numerical examples demonstrate the efficiency and flexibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zuo K, Chen L, Zhang Y, et al. Manufacturing-and machiningbased topology optimization. International Journal of Advanced Manufacturing Technology, 2006, 27(5–6): 531–536

    Article  Google Scholar 

  2. Xia Q, Shi T, Wang M Y, et al. A level set based method for the optimization of cast part. Structural and Multidisciplinary Optimization, 2010, 41(5): 735–747

    Article  Google Scholar 

  3. Li H, Li P, Gao L, et al. A level set method for topological shape optimization of 3D structures with extrusion constraints. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 615–635

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang S, Wang M Y. Radial basis functions and level set method for structural topology optimization. International Journal for Numerical Methods in Engineering, 2006, 65(12): 2060–2090

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang M Y, Wang X. PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Computer Modeling in Engineering & Sciences, 2004, 6 (4): 373–396

    MathSciNet  MATH  Google Scholar 

  6. Wang M Y, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224

    Article  MathSciNet  MATH  Google Scholar 

  8. Luo Y, Wang M Y, Zhou M, et al. Topology optimization of reinforced concrete structures considering control of shrinkage and strength failure. Computers & Structures, 2015, 157: 31–41

    Article  Google Scholar 

  9. Gao X, Ma H. Topology optimization of continuum structures under buckling constraints. Computers & Structures, 2015, 157: 142–152

    Article  Google Scholar 

  10. Borrvall T, Petersson J. Topology optimization of fluids in stokes flow. International Journal for Numerical Methods in Fluids, 2003, 41(1): 77–107

    Article  MathSciNet  MATH  Google Scholar 

  11. Gersborg-Hansen A, Bendse M P, Sigmund O. Topology optimization of heat conduction problems using the finite volume method. Structural and Multidisciplinary Optimization, 2006, 31(4): 251–259

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou S, Li W, Li Q. Level-set based topology optimization for electromagnetic dipole antenna design. Journal of Computational Physics, 2010, 229(19): 6915–6930

    Article  MathSciNet  MATH  Google Scholar 

  13. Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 93(3): 291–318

    Article  MATH  Google Scholar 

  14. Allaire G, Bonnetier E, Francfort G, et al. Shape optimization by the homogenization method. Numerische Mathematik, 1997, 76(1): 27–68

    Article  MathSciNet  MATH  Google Scholar 

  15. Bendse M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202

    Article  Google Scholar 

  16. Zhou M, Rozvany G I N. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1–3): 309–336

    Article  Google Scholar 

  17. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896

    Article  Google Scholar 

  18. Tanskanen P. The evolutionary structural optimization method: Theoretical aspects. Computer Methods in Applied Mechanics and Engineering, 2002, 191(47–48): 5485–5498

    Article  MATH  Google Scholar 

  19. Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393

    Article  MathSciNet  MATH  Google Scholar 

  20. Xia Q, Shi T, Liu S, et al. A level set solution to the stress-based structural shape and topology optimization. Computers & Structures, 2012, 90–91: 55–64

    Article  Google Scholar 

  21. Chen J, Shapiro V, Suresh K, et al. Shape optimization with topological changes and parametric control. International Journal for Numerical Methods in Engineering, 2007, 71(3): 313–346

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen J, Freytag M, Shapiro V. Shape sensitivity of constructively represented geometric models. Computer Aided Geometric Design, 2008, 25(7): 470–488

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo J, Luo Z, Chen S, et al. A new level set method for systematic design of hinge-free compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 2008, 198(2): 318–331

    Article  MATH  Google Scholar 

  24. Liu T, Wang S, Li B, et al. A level-set-based topology and shape optimization method for continuum structure under geometric constraints. Structural and Multidisciplinary Optimization, 2014, 50(2): 253–273

    Article  MathSciNet  Google Scholar 

  25. Liu T, Li B, Wang S, et al. Eigenvalue topology optimization of structures using a parameterized level set method. Structural and Multidisciplinary Optimization, 2014, 50(4): 573–591

    Article  MathSciNet  Google Scholar 

  26. Liu J, Ma Y S. 3D level-set topology optimization: A machining feature-based approach. Structural and Multidisciplinary Optimization, 2015, 52(3): 563–582

    Article  MathSciNet  Google Scholar 

  27. Xia Q, Shi T. Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2015, 295: 525–542

    Article  MathSciNet  Google Scholar 

  28. Guo X, Zhang W, Zhang J, et al. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711–748

    Article  MathSciNet  Google Scholar 

  29. Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  30. Cottrell J A, Hughes T J R, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. Chichester Wiley, 2009

    Book  MATH  Google Scholar 

  31. Hughes T J R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Mineola: Courier Dover Publications, 2000

    MATH  Google Scholar 

  32. Seo Y D, Kim H J, Youn S K. Isogeometric topology optimization using trimmed spline surfaces. Computer Methods in Applied Mechanics and Engineering, 2010, 199(49–52): 3270–3296

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim H J, Seo Y D, Youn S K. Isogeometric analysis for trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 2009, 198(37–40): 2982–2995

    Article  MATH  Google Scholar 

  34. Kumar A, Parthasarathy A. Topology optimization using B-spline finite element. Structural and Multidisciplinary Optimization, 2011, 44(4): 471–481

    Article  MathSciNet  MATH  Google Scholar 

  35. Ded L, Borden M J, Hughes T J R. Isogeometric analysis for topology optimization with a phase field model. Archives of Computational Methods in Engineering, 2012, 19(3): 427–465

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang Y, Benson D J. Isogeometric analysis for parameterized LSMbased structural topology optimization. Computational Mechanics, 2016, 57(1): 19–35

    Article  MathSciNet  MATH  Google Scholar 

  37. Scott M A, Borden M J, Verhoosel C V, et al. Isogeometric finite element data structures based on Bzier extraction of T-splines. International Journal for Numerical Methods in Engineering, 2011, 88(2): 126–156

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, et al. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47–48): 3410–3424

    Article  MathSciNet  MATH  Google Scholar 

  39. Speleers H, Manni C, Pelosi F, et al. Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems. Computer Methods in Applied Mechanics and Engineering, 2012, 221–222: 132–148

    Article  MathSciNet  MATH  Google Scholar 

  40. Kim H J, Seo Y D, Youn S K. Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2796–2812

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang Y W, Huang Z D, Zheng Y, et al. Isogeometric analysis for compound B-spline surfaces. Computer Methods in Applied Mechanics and Engineering, 2013, 261–262: 1–15

    Article  MathSciNet  MATH  Google Scholar 

  42. Beer G, Marussig B, Zechner J. A simple approach to the numerical simulation with trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 776–790

    Article  MathSciNet  MATH  Google Scholar 

  43. Nagy A P, Benson D J. On the numerical integration of trimmed isogeometric elements. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 165–185

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang Y, Benson D J, Nagy A P. A multi-patch nonsingular isogeometric boundary element method using trimmed elements. Computational Mechanics, 2015, 56(1): 173–191

    Article  MathSciNet  MATH  Google Scholar 

  45. Luo Z, Wang MY, Wang S, et al. A level-set-based parameterization method for structural shape and topology optimization. International Journal for Numerical Methods in Engineering, 2008, 76(1): 1–26

    Article  MathSciNet  MATH  Google Scholar 

  46. Luo Z, Tong L, Kang Z. A level set method for structural shape and topology optimization using radial basis functions. Computers & Structures, 2009, 87(7–8): 425–434

    Article  Google Scholar 

  47. Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12–49

    Article  MathSciNet  MATH  Google Scholar 

  48. Mei Y, Wang X, Cheng G. A feature-based topological optimization for structure design. Advances in Engineering Software, 2008, 39 (2): 71–87

    Article  Google Scholar 

  49. Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer, 2003

    Book  MATH  Google Scholar 

  50. Luo Z, Tong L, Wang M Y, et al. Shape and topology optimization of compliant mechanisms using a parameterization level set method. Journal of Computational Physics, 2007, 227(1): 680–705

    Article  MathSciNet  MATH  Google Scholar 

  51. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 1995, 4(1): 389–396

    Article  MathSciNet  MATH  Google Scholar 

  52. Piegl L, Tiller W. The NURBS Book (Monographs in Visual Communication). Berlin: Springer, 1997

    Book  MATH  Google Scholar 

  53. de Boor C. On calculating with B-splines. Journal of Approximation Theory, 1972, 6(1): 50–62

    Article  MathSciNet  MATH  Google Scholar 

  54. Benson D J, Hartmann S, Bazilevs Y, et al. Blended isogeometric shells. Computer Methods in Applied Mechanics and Engineering, 2013, 255: 133–146

    Article  MathSciNet  MATH  Google Scholar 

  55. Benson D J, Bazilevs Y, Hsu M C, et al. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13–16): 1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  56. Li K, Qian X. Isogeometric analysis and shape optimization via boundary integral. Computer Aided Design, 2011, 43(11): 1427–1437

    Article  Google Scholar 

  57. Cai S, Zhang W. Stress constrained topology optimization with freeform design domains. Computer Methods in Applied Mechanics and Engineering, 2015, 289: 267–290

    Article  MathSciNet  Google Scholar 

  58. Hales T C. The Jordan curve theorem, formally and informally. American Mathematical Monthly, 2007, 114(10): 882–894

    Article  MathSciNet  MATH  Google Scholar 

  59. Shimrat M, Algorithm M. Algorithm 112: Position of point relative to polygon. Communications of the ACM, 1962, 5(8): 434–451

    Article  Google Scholar 

  60. Nassar A, Walden P, Haines E, et al. Fastest point in polygon test. Ray Tracing News, 1992, 5(3)

    Google Scholar 

  61. Haines E. Point in Polygon Strategies. In: Heckbert S, ed. Graphics Gems IV. Elsevier, 1994, 24–26

  62. Lasserre J. Integration on a convex polytope. Proceedings of the American Mathematical Society, 1998, 126(08): 2433–2441

    Article  MathSciNet  MATH  Google Scholar 

  63. Dunavant D A. High degree efficient symmetrical Gaussian quadrature rules for the triangle. International Journal for Numerical Methods in Engineering, 1985, 21(6): 1129–1148

    Article  MathSciNet  MATH  Google Scholar 

  64. Bendse M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer, 2003

    Google Scholar 

  65. Wang S, Wang M Y. Structural shape and topology optimization using an implicit free boundary parametrization method. Computer Modeling in Engineering & Sciences, 2006, 13(2): 119–147

    MathSciNet  MATH  Google Scholar 

  66. Shapiro V. Theory of R-functions and Applications: A Primer. Technical Report CPA88-3. 1991

    Google Scholar 

  67. Gerstle T L, Ibrahim A M S, Kim P S, et al. A plastic surgery application in evolution: Three-dimensional printing. Plastic and Reconstructive Surgery, 2014, 133(2): 446–451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Benson, D.J. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements. Front. Mech. Eng. 11, 328–343 (2016). https://doi.org/10.1007/s11465-016-0403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-016-0403-0

Keywords

Navigation