Skip to main content
Log in

Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5–4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, Gardeler H, Gmehling J. Model and experimental data research of natural gas storage for vehicular usage. Separation and Purification Technology, 1997, 12(1): 35–41

    Article  Google Scholar 

  2. EIA. U.S. Annual Energy Outlook 2014. 2014, http://www.eia.gov/forecasts/archive/aeo14/index.cfm

    Google Scholar 

  3. NaturalGas.org. Natural Gas and the Environment. 2011, http://naturalgas.org/environment/naturalgas/

    Google Scholar 

  4. Menon V C, Komarneni S. Porous adsorbents for vehicular natural gas storage: A review. Journal of Porous Materials, 1998, 5(1): 43–58

    Article  Google Scholar 

  5. Mason J A, Veenstra M, Long J R. Evaluating metal-organic frameworks for natural gas storage. Chemical Science (Cambridge), 2014, 5(1): 32–51

    Article  Google Scholar 

  6. Wegrzyn J, Wiesmann H, Lee T. Low pressure storage of natural gas on activated carbon. In: Proceedings of 1992 Annual Automotive Technology Development Contractors’ Coordination meeting (ATD/CCM). Dearborn, 1992

    Google Scholar 

  7. Quinn D F, MacDonald J A, Sosin K. Microporous carbons as adsorbents for methane storage. U.S. Department of Energy Technical Report. 1994

    Google Scholar 

  8. Biloe S, Goetz V, Mauran S. Characterization of adsorbent composite blocks for methane storage. Carbon, 2001, 39(11): 1653–1662

    Article  Google Scholar 

  9. Pupier O, Goetz V, Fiscal R. Effect of cycling operations on an adsorbed natural gas storage. Chemical Engineering and Processing: Process Intensification, 2005, 44(1): 71–79

    Article  Google Scholar 

  10. Yang X D, Zheng Q R, Gu A Z, et al. Experimental studies of the performance of adsorbed natural gas storage system during discharge. Applied Thermal Engineering, 2005, 25(4): 591–601

    Article  Google Scholar 

  11. Celzard A, Perrin A, Albiniak A, et al. The effect of wetting on pore texture and methane storage ability of NaOH activated anthracite. Fuel, 2007, 86(1–2): 287–293

    Article  Google Scholar 

  12. Molina-Sabio M, Almansa C, Rodríguez-Reinoso F. Phosphoric acid activated carbon discs for methane adsorption. Carbon, 2003, 41(11): 2113–2119

    Article  Google Scholar 

  13. Bagheri N, Abedi J. Adsorption of methane on corn cobs based activated carbon. Chemical Engineering Research & Design, 2011, 89(10): 2038–2043

    Article  Google Scholar 

  14. ARPA-E. U.S. ARPA-E’s MOVE Projects. 2015, http://arpa-e.energy.gov/?q=arpa-e-programs/move

    Google Scholar 

  15. Casco M E, Martínez-Escandell M, Gadea-Ramos E, et al. Highpressure methane storage in porous materials: Are carbon materials in the pole position? Chemistry of Materials, 2015, 27(3): 959–964

    Article  Google Scholar 

  16. Matranga K R, Myers A L, Glandt E D. Storage of natural gas by adsorption on activated carbon. Chemical Engineering Science, 1992, 47(7): 1569–1579

    Article  Google Scholar 

  17. Nitta T, Nozawa M, Kida S. Gas-phase adsorption characteristics of high-surface area carbons activated from meso-carbon micro-beads. Journal of Chemical Engineering of Japan, 1992, 25(2): 176–182

    Article  Google Scholar 

  18. Pfeifer P, Ehrburger-Dolle F, Rieker T P, et al. Nearly space-filling fractal networks of carbon nanopores. Physical Review Letters, 2002, 88(11): 115502

    Article  Google Scholar 

  19. Pfeifer P, Burressa J W, Wood M B, et al. High-surface-area biocarbons for reversible on-board storage of natural gas and hydrogen. In: Fthenakis V, Dillon A, Savage N, eds. MRS Proceedings. Volume 1041. Cambridge: Cambridge University Press, 2007

    Google Scholar 

  20. Firlej L, Roszak S, Kuchta B, et al. Enhanced hydrogen adsorption in boron substituted carbon nanospaces. Journal of Chemical Physics, 2009, 131(16): 164702

    Article  Google Scholar 

  21. Zhao Y L, Stoddart J F. Noncovalent functionalization of singlewalled carbon nanotubes. Accounts of Chemical Research, 2009, 42 (8): 1161–1171

    Article  Google Scholar 

  22. Bekyarova E, Murata K, Yudasaka M, et al. Single-wall nanostructured carbon for methane storage. Journal of Physical Chemistry B, 2003, 107(20): 4681–4684

    Article  Google Scholar 

  23. Tanaka H, El-Merraoui M, Steele W A, et al. Methane adsorption on single-walled carbon nanotube: A density functional theory model. Chemical Physics Letters, 2002, 352(5–6): 334–341

    Article  Google Scholar 

  24. Cao D, Zhang X, Chen J, et al. Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. Journal of Physical Chemistry B, 2003, 107(48): 13286–13292

    Article  Google Scholar 

  25. Ganji M D, Mirnejad A, Najafi A. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes. Science and Technology of Advanced Materials, 2010, 11(4): 045001

    Article  Google Scholar 

  26. Lee J W, Kang H C, Shim W G, et al. Methane adsorption on multiwalled carbon nanotube at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 2006, 51(3): 963–967

    Article  Google Scholar 

  27. Thierfelder C, Witte M, Blankenburg S, et al. Methane adsorption on graphene from first principles including dispersion interaction. Surface Science, 2011, 605(7–8): 746–749

    Article  Google Scholar 

  28. Carrillo I, Rangel E, Magaña L. Adsorption of carbon dioxide and methane on graphene with a high titanium coverage. Carbon, 2009, 47(11): 2758–2760

    Article  Google Scholar 

  29. Wood B C, Bhide S Y, Dutta D, et al. Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study. Journal of Chemical Physics, 2012, 137(5): 054702

    Article  Google Scholar 

  30. Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523–527

    Article  Google Scholar 

  31. Romanos J, Beckner M, Rash T, et al. Nanospace engineering of KOH activated carbon. Nanotechnology, 2012, 23(1): 015401

    Article  Google Scholar 

  32. Eddaoudi M, Moler D B, Li H, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001, 34(4): 319–330

    Article  Google Scholar 

  33. Getman R B, Bae Y S, Wilmer C E, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chemical Reviews, 2012, 112(2): 703–723

    Article  Google Scholar 

  34. Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metalorganic frameworks. Science, 2010, 329(5990): 424–428

    Article  Google Scholar 

  35. Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? Journal of the American Chemical Society, 2012, 134(36): 15016–15021

    Article  Google Scholar 

  36. Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review, 1929, 34(1): 57–64

    MATH  Google Scholar 

  37. Lennard-Jones J E. Cohesion. Proceedings of the Physical Society, 1931, 43(5): 461–482

    Article  MATH  Google Scholar 

  38. Allinger N L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society, 1977, 99(25): 8127–8134

    Article  Google Scholar 

  39. Xu Q, Zhong C. A general approach for estimating framework charges in metal-organic frameworks. Journal of Physical Chemistry C, 2010, 114(11): 5035–5042

    Article  Google Scholar 

  40. Wilmer C E, Snurr R Q. Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration. Chemical Engineering Journal, 2011, 171(3): 775–781

    Article  Google Scholar 

  41. Frost H, Düren T, Snurr R Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. Journal of Physical Chemistry B, 2006, 110(19): 9565–9570

    Article  Google Scholar 

  42. Düren T, Snurr R Q. Assessment of isoreticular metal-organic frameworks for adsorption separations: A molecular simulation study of methane/n-butane mixtures. Journal of Physical Chemistry B, 2004, 108(40): 15703–15708

    Article  Google Scholar 

  43. Gallo M, Glossman-Mitnik D. Fuel gas storage and separations by metal-organic frameworks: Simulated adsorption isotherms for H2 and CH4 and their equimolar mixture. Journal of Physical Chemistry C, 2009, 113(16): 6634–6642

    Article  Google Scholar 

  44. Kaye S S, Dailly A, Yaghi O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O (1, 4-benzenedicarboxylate) 3 (MOF-5). Journal of the American Chemical Society, 2007, 129(46): 14176–14177

    Article  Google Scholar 

  45. ARPA-E. MOVE Annual Meeting/NGVTF 2014 Fall Meeting Onboard Storage Projects. 2014, http://www1.eere.energy.gov/cleancities/natural_gas_forum_meeting_oct2014.html

    Google Scholar 

  46. Zhang S Y, Talu O, Hayhurst D T. High-pressure adsorption of methane in zeolites NaX, MgX, CaX, SrX and BaX. Journal of Physical Chemistry, 1991, 95(4): 1722–1726

    Article  Google Scholar 

  47. Reich R, Ziegler W T, Rogers K A. Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212–301 K and pressures to 35 atmospheres. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(3): 336–344

    Article  Google Scholar 

  48. Ding T F, Ozawa S, Yamazaki T, et al. A generalized treatment of adsorption of methane onto various zeolites. Langmuir, 1988, 4(2): 392–396

    Article  Google Scholar 

  49. Abdul-Rehman H, Hasanain M, Loughlin K. Quaternary, ternary, binary, and pure component sorption on zeolites. 1. Light alkanes on Linde S-115 silicalite at moderate to high pressures. Industrial & Engineering Chemistry Research, 1990, 29(7): 1525–1535

    Article  Google Scholar 

  50. Talu O, Zhang S Y, Hayhurst D T. Effect of cations on methane adsorption by NaY, MgY, CaY, SrY, and BaY zeolites. Journal of Physical Chemistry, 1993, 97(49): 12894–12898

    Article  Google Scholar 

  51. Quinn D F, Holland J A. Carbonaceous Material with High Micropore and Low Macropore Volume and Process for Producing Same. Google Patents. 1991

    Google Scholar 

  52. Pfeifer P. Advanced natural gas fuel tank project. In: Proceedings of Natural Gas Vehicle Technology Forum. San Francisco, 2011

    Google Scholar 

  53. Raff L, Lorenzen J, McCoy B. Theoretical investigations of gas—Solid interaction phenomena. I. Journal of Chemical Physics, 1967, 46(11): 4265–4274

    Article  Google Scholar 

  54. Do D D. Adsorption Analysis. Singapore: World Scientific, 1998

    Google Scholar 

  55. Condon J B. Surface Area and Porosity Determinations by Physisorption: Measurements and Theory. Elsevier, 2006

    Google Scholar 

  56. Rouquerol J, Rouquerol F, Sing K S W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. 2nd ed. London: Academic press, 2014

    Google Scholar 

  57. Choudhary V R, Mayadevi S. Adsorption of methane, ethane, ethylene, and carbon dioxide on silicalite-l. Zeolites, 1996, 17(5–6): 501–507

    Article  Google Scholar 

  58. Jensen H. Chemical studies on toad poisons. VIII. The dehydrogenation of cinobufagin. Journal of the American Chemical Society, 1935, 57(12): 2733–2734

    Article  Google Scholar 

  59. Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938, 60(2): 309–319

    Article  Google Scholar 

  60. Kim S K, Oh B K. Theory of localized and non-localized adsorption. Thin Solid Films, 1968, 2(5–6): 445–456

    Article  Google Scholar 

  61. Xi Y, Bažant Z P, Jennings H M. Moisture diffusion in cementitious materials adsorption isotherms. Advanced Cement Based Materials, 1994, 1(6): 248–257

    Article  Google Scholar 

  62. Kruk M, Jaroniec M, Bereznitski Y. Adsorption study of porous structure development in carbon blacks. Journal of Colloid and Interface Science, 1996, 182(1): 282–288

    Article  Google Scholar 

  63. Sing K S W, Everett D H, Haul R A W, et al. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  Google Scholar 

  64. Kapoor A, Yang R. Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Separation & Purification, 1989, 3(4): 187–192

    Article  Google Scholar 

  65. Donohue M, Aranovich G. Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, 1998, 76–77: 137–152

    Google Scholar 

  66. Li H, Eddaoudi M, Groy T L, et al. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn (BDC) (BDC = 1, 4-benzenedicarboxylate). Journal of the American Chemical Society, 1998, 120(33): 8571–8572

    Article  Google Scholar 

  67. Tan Z, Gubbins K E. Selective adsorption of simple mixtures in slit pores: A model of methane-ethane mixtures in carbon. Journal of Physical Chemistry, 1992, 96(2): 845–854

    Article  Google Scholar 

  68. Cracknell R F, Gordon P, Gubbins K E. Influence of pore geometry on the design of microporous materials for methane storage. Journal of Physical Chemistry, 1993, 97(2): 494–499

    Article  Google Scholar 

  69. Mota J B, Rodrigues A E, Saatdjian E, et al. Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon, 1997, 35(9): 1259–1270

    Article  Google Scholar 

  70. Stella A, Myers A. Adsorption of methane on activated carbon: Comparison of molecular simulation with experiment. In: Proceedings of Annual AIChE Meeting. 1991

    Google Scholar 

  71. Sun J, Todd A B, Mark J R. Adsorbed natural gas storage with activated carbon. Preprints of Papers, American Chemical Society, Division of Fuel Chemistry, 1996, 41(1): 246–250

    Google Scholar 

  72. Basumatary R, Dutta P, Prasad M, et al. Thermal modeling of activated carbon based adsorptive natural gas storage system. Carbon, 2005, 43(3): 541–549

    Article  Google Scholar 

  73. Cracknell R, Gubbins K. A Monte Carlo study of methane adsorption in aluminophosphates and porous carbons. Journal of Molecular Liquids, 1992, 54(4): 239–251

    Article  Google Scholar 

  74. Ma Z, Kyotani T, Liu Z, et al. Very high surface area microporous carbon with a three-dimensional nano-array structure: Synthesis and its molecular structure. Chemistry of Materials, 2001, 13(12): 4413–4415

    Article  Google Scholar 

  75. Bojan M J, van Slooten R, Steele W. Computer simulation studies of the storage of methane in microporous carbons. Separation Science and Technology, 1992, 27(14): 1837–1856

    Article  Google Scholar 

  76. Humble P H, Williams R M, Hayes J C. Finite element modeling of adsorption processes for gas separation and purification. In: Proceedings of Monitoring Research Review (MRR 2009): Ground-Based Nuclear Explosion Monitoring Technologies. Los Alamos: Los Alamos National Laboratory, 2009, 659–666

    Google Scholar 

  77. Di J, Liu J. Numerical simulation based on COMSOL multiphysic to steady and non-equilibrium adsorption-mobilization of coalbed methane. Journal of Wuhan Polytechnic University, 2007, 26(3): 60–62 (in Chinese)

    Google Scholar 

  78. Sahoo P K, John M, Newalkar B L, et al. Filling characteristics for an activated carbon based adsorbed natural gas storage system. Industrial & Engineering Chemistry Research, 2011, 50(23): 13000–13011

    Article  Google Scholar 

  79. Sahoo P K, John M, Newalkar B L, et al. Corrections to “filling characteristics for an activated carbon based adsorbed natural gas storage system”. Industrial & Engineering Chemistry Research, 2014, 53(11): 4522–4523

    Article  Google Scholar 

  80. Kunz R, Golde R. High-pressure conformable hydrogen storage for fuel cell vehicles. In: Proceedings of the 2000 Hydrogen Program Review. Alexandria, 2000

    Google Scholar 

  81. Xu H, Lin Y. Optimal Design of Conformable Adsorbed Natural Gas Tank. University of Missouri Project Report. 2013

    Google Scholar 

  82. APRA-E. Low-Cost Efficient Manufacturing of Pressurized Conformal Compressed Natural Gas Storage Tanks. 2014, http://arpa-e.energy.gov/?q=slick-sheet-project/ultra-light-conformable-naturalgas-tank

    Google Scholar 

  83. Lin Y, Xu H. US Patent Application, 2014 0166664 A1, 2014-06-19

    Google Scholar 

  84. Fuel Maker B. Home-fueling CNG Compressor. 2015, http://www.brcfuelmaker.com/en/phill-domestico-prodotto-brc-fuel-maker.aspx

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyi Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Z., Lin, Y. & Jin, X. Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review. Front. Mech. Eng. 11, 258–274 (2016). https://doi.org/10.1007/s11465-016-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-016-0381-2

Keywords

Navigation