Skip to main content
Log in

Parameter studies on impact in a lap joint

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter’s effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilardi G, Sharf I. Literature survey of contact dynamics modelling. Mechanism and Machine Theory, 2002, 37(10): 1213–1239

    Article  MATH  MathSciNet  Google Scholar 

  2. Davies H G. Random vibration of a beam impacting stops. Journal of Sound and Vibration, 1980, 68(4): 479–487

    Article  MATH  Google Scholar 

  3. Pun D, Lau S L, Liu Y B. Internal resonance of an L-shaped beam with a limit stop: Part I, Free vibration. Journal of Sound and Vibration, 1996, 193(5): 1023–1035

    Article  Google Scholar 

  4. Pun D, Lau S L, Liu Y B. Internal resonance of an L-shaped beam with a limit stop: Part II, Forced vibration. Journal of Sound and Vibration, 1996, 193(5): 1037–1047

    Article  Google Scholar 

  5. Metallidis P, Natsiavas S. Vibration of a continuous system with clearance and motion constraints. International Journal of Nonlinear Mechanics, 2000, 35(4): 675–690

    Article  MATH  Google Scholar 

  6. Chattopadhyay S. Dynamics of vibrating beams impacting around a clearance gap. In: Proceedings of IMAC-XIX: A Conference on Structural Dynamics. Kissimmee, 2001

    Google Scholar 

  7. Dumont Y, Kuttler K L, Shillor M. Analysis and simulations of vibrations of a beam with a slider. Journal of Engineering Mathematics, 2003, 47(1): 61–82

    Article  MATH  MathSciNet  Google Scholar 

  8. Ervin E K, Wickert J A. Repetitive impact response of a beam structure subjected to harmonic base excitation. Journal of Sound and Vibration, 2007, 307(1–2): 2–19

    Article  Google Scholar 

  9. Ervin E K. Vibro-impact behavior of two orthogonal beams. Journal of Engineering Mechanics, 2009, 135(6): 529–537

    Article  Google Scholar 

  10. Moorthy R I K, Kakodkar A, Srirangarajan H R, et al. Finite element simulation of chaotic vibrations of a beam with non-linear boundary conditions. Computers & Structures, 1993, 49(4): 589–596

    Article  MATH  Google Scholar 

  11. van de Vorst E L B, Heertjes M F, van Campen D H, et al. Experimental and numerical analysis of the steady state behaviour of a beam system with impact. Journal of Sound and Vibration, 1998, 212(2): 321–336

    Article  Google Scholar 

  12. Wagg D J, Bishop S R. Application of non-smooth modelling techniques to the dynamic of a flexible impacting beam. Journal of Sound and Vibration, 2002, 256(5): 803–820

    Article  Google Scholar 

  13. Vyasarayani C P, Sandhu S S, McPhee J. Nonsmooth modeling of vibro-impacting Euler-Bernoulli beam. Advances in Acoustics and Vibration, 2012, 2012: 1–9

    Article  Google Scholar 

  14. Mackerle J. Finite element analysis of fastening and joining: A bibliography (1990–2002). International Journal of Pressure Vessels and Piping, 2003, 80(4): 253–271

    Article  Google Scholar 

  15. Kim J, Yoon J C, Kang B S. Finite element analysis and modeling of structure with bolted joints. Applied Mathematical Modelling, 2007, 31(5): 895–911

    Article  MATH  Google Scholar 

  16. Salih E L, Gardner L, Nethercot D A. Numerical study of stainless steel gusset plate connections. Engineering Structures, 2013, 49(0): 448–464

    Article  Google Scholar 

  17. Zang M, Gao W, Lei Z. A contact algorithm for 3d discrete and finite element contact problems based on penalty function method. Computational Mechanics, 2011, 48(5): 541–550

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang T, Fan S H, Lin C S. Joint stiffness identification using FRF measurements. Computers & Structures, 2003, 81(28–29): 2549–2556

    Article  Google Scholar 

  19. Barhorst A A. Modeling loose joints in elastic structures-variable structure motion model development. Journal of Vibration and Control, 2008, 14(11): 1767–1797

    Article  MATH  MathSciNet  Google Scholar 

  20. Barhorst A A. Modeling loose joints in elastic structures simulation algorithm and results. Journal of Vibration and Control, 2009, 15(1): 3–24

    Article  MathSciNet  Google Scholar 

  21. Jalali H, Ahmadian H, Mottershead J E. Identification of nonlinear bolted lap-joint parameters by force-state mapping. International Journal of Solids and Structures, 2007, 44(25–26): 8087–8105

    Article  MATH  Google Scholar 

  22. Ahmadian H, Jalali H. Identification of bolted lap joints parameters in assembled structures. Mechanical Systems and Signal Processing, 2007, 21(2): 1041–1050

    Article  Google Scholar 

  23. Iranzad M, Ahmadian H. Identification of nonlinear bolted lap joint models. Computers & Structures, 2012, 96-97: 1–8

    Article  Google Scholar 

  24. Barhorst A A. Modeling loose joints in elastic structures momentum transfer model development. Journal of Vibration and Control, 2008, 14(12): 1803–1841

    Article  MATH  MathSciNet  Google Scholar 

  25. Foster J T, Barhorst A A, Wong C N S, et al. Modeling loose joints in elastic structures experimental results and validation. Journal of Vibration and Control, 2009, 15(4): 549–565

    Article  MATH  Google Scholar 

  26. Rahmani A M, Ervin E K. Frequency response of an impacting lap joint. Journal of Nonlinear Dynamics, 2014, 2014: 1–10

    Article  Google Scholar 

  27. HIS, Inc. Engineering Sciences Data Unit, IHS ESDU 91001: Structural parameters used in response calculations. Estimation of numerical values. 2012, http://www.esdu.com/cgi-bin/ps.pl?t=doc&p=edsu_91001-r1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth K. Ervin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A.M., Ervin, E.K. Parameter studies on impact in a lap joint. Front. Mech. Eng. 10, 64–77 (2015). https://doi.org/10.1007/s11465-014-0322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-014-0322-x

Keywords

Navigation