Skip to main content
Log in

Sharp lower bound of spectral gap for Schrödinger operator and related results

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We give an easy proof of Andrews and Clutterbuck’s main results [J. Amer. Math. Soc., 2011, 24(3): 899–916], which gives both a sharp lower bound for the spectral gap of a Schrödinger operator and a sharp modulus of concavity for the logarithm of the corresponding first eigenfunction. We arrive directly at the same estimates by the ‘double coordinate’ approach and asymptotic behavior of parabolic flows. Although using the techniques appeared in the above paper, we partly simplify the method and argument. This maybe help to provide an easy way for estimating spectral gap. Besides, we also get a new lower bound of spectral gap for a class of Schödinger operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews B, Clutterbuck J. Proof of the fundamental gap conjecture. J Amer Math Soc, 2011, 24(3): 899–916

    Article  MATH  MathSciNet  Google Scholar 

  2. Ashbaugh M S, Benguria R. Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc Amer Math Soc, 1989, 105(2): 419–424

    MATH  MathSciNet  Google Scholar 

  3. Bañelos R, Kröger P. Gradient estimates for the ground state Schrödinger eigenfunction and applications. Comm Math Phys, 2001, 224(2): 545–550

    Article  MathSciNet  Google Scholar 

  4. Bañuelos R, Méndez-Hernández P J. Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps. J Funct Anal, 2000, 176(2): 368–399

    Article  MATH  MathSciNet  Google Scholar 

  5. Benguria R D, Linde H, Loewe B. Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator. Bull Math Sci, 2012, 2(1): 1–56

    Article  MATH  MathSciNet  Google Scholar 

  6. Berg M van den. On condensation in the free-boson gas and the spectrum of the Laplacian. J Stat Phys, 1983, 31(3): 623–637

    Article  Google Scholar 

  7. Brascamp H, Liep E. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave function, and with an application to diffusion equation. J Funct Anal, 1976, 22: 366–389

    Article  MATH  Google Scholar 

  8. Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. Probability and Its Applications. New York: Springer-Verlag, 2005

    Google Scholar 

  9. Chen M F. General estimate of the first eigenvalue on manifolds. Front Math China, 2011, 6(6): 1025–1043

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen M F, Wang F Y. Application of coupling method to the first eigenvalue on manifold. Sci China Ser A, 1994, 37(1): 1–14

    MATH  MathSciNet  Google Scholar 

  11. Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc, 1997, 349(3): 1239–1267

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen Y Z. Second Order Parabolic Equations. Beijing: Peking University Press, 2003 (in Chinese)

    Google Scholar 

  13. Clutterbuck J. Parabolic Equations with Continuous Initial Data. Ph D Thesis, Australian National University. http://arxiv.org/abs/math/0504455

  14. Courant R, Hilbert D. Methods of Mathematical Physics, I. New York: Interscience, 1953

    Google Scholar 

  15. Davis B. On the spectral gap for fixed membranes. Ark Mat, 2001, 39(1): 65–74

    Article  MATH  MathSciNet  Google Scholar 

  16. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001

    MATH  Google Scholar 

  17. Gong F Z, Li H Q, Luo D J. The fundamental gap conjecture: a probabilistic approach via the coupling by reflection. http://arxiv.org/abs/1303.2459

  18. Gong F Z, Liu Yong, Liu Yuan, Luo D J. Spectral gaps of Schrödinger operators and diffusion operators on abstract Wiener spaces. J Funct Anal, 2014, 266(9): 5639–5675

    Article  MATH  MathSciNet  Google Scholar 

  19. Henrot A. Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Basel: Birkhäuser Verlag, 2006

    Google Scholar 

  20. Henrot A, Pierre M. Variation et optimisation de formes: Une analyse géométrique. Mathématiques & Applications (Berlin), Vol 48. Berlin: Springer, 2005

    Google Scholar 

  21. Horváth M. On the first two eigenvalues of Sturm-Liouville operators. Proc Amer Math Soc, 2003, 131(4): 1215–1224

    Article  MATH  MathSciNet  Google Scholar 

  22. Hsu E P. Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, 38. Providence: American Mathematical Society, 2002

    MATH  Google Scholar 

  23. Hu Bei. Blow-up Theories for Semilinear Parabolic Equations. Lecture Notes in Math, Vol 2018. Heidelberg: Springer, 2011

    MATH  Google Scholar 

  24. Lavine R. The eigenvalue gap for one-dimensional convex potentials. Proc Amer Math Soc, 1994, 121(3): 815–821

    Article  MATH  MathSciNet  Google Scholar 

  25. Lee Ki-ahm, Vázquez J L. Parabolic approach to nonlinear elliptic eigenvalue problems. Adv Math, 2008, 219(6): 2006–2028

    Article  MATH  MathSciNet  Google Scholar 

  26. Li P. A lower bound for the first eigenvalue of the Laplacian on a compact Riemannian manifold. Indiana Univ Math J, 1979, 28: 1013–1019

    Article  MATH  MathSciNet  Google Scholar 

  27. Li P, Yau S T. On the Schrödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88(3): 309–318

    Article  MATH  MathSciNet  Google Scholar 

  28. Lieberman G M. Second Order Parabolic Differential Equations. River Edge: World Scientific Publishing Co, Inc, 1996

    Book  MATH  Google Scholar 

  29. Ling J. Estimates on the lower bound of the first gap. Comm Anal Geom, 2008, 16(3): 539–563

    Article  MATH  MathSciNet  Google Scholar 

  30. Lu Z Q. Eigenvalue Gaps (I). UCI PDE Learning Seminar, May 26, 2011 http://www.math.uci.edu/~zlu/talks/2011-UCI-PDE/uci-pde-seminar-1.pdf

    Google Scholar 

  31. Ni L. Estimates on the modulus of expansion for vector fields solving nonlinear equations. J Math Pure Appl, 2013, 99(1): 1–16

    Article  MATH  Google Scholar 

  32. Qian Z M, Zhang H C, Zhu X P. Sharp spectral gap and Li-Yau’s estimate on Alexandrov spaces. Math Z, 2013, 273(3–4): 1175–1195

    Article  MATH  MathSciNet  Google Scholar 

  33. Schoen R, Yau S T. Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, Vol I. Boston: International Press, 1994

    MATH  Google Scholar 

  34. Shi Y M, Zhang H C. Lower bounds for the first eigenvalue on compact manifolds. Chinese Ann Math Ser A, 2007, 28(6): 863–866

    MATH  MathSciNet  Google Scholar 

  35. Singer I M, Wong B, Yau S T, Yau S S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Ann Sc Norm Super Pisa Cl Sci (4), 1985, 12(2): 319–333

    MATH  MathSciNet  Google Scholar 

  36. Wolfson J. Eigenvalue gap theorems for a class of non symmetric elliptic operators on convex domains. http://arxiv.org/abs/1212.1669

  37. Yau S T. Nonlinear Analysis in Geometry. Monographies de L’Enseignement Math, Vol 33. L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8

  38. Yau S T. An estimate of the gap of the first two eigenvalues in the Schrödinger operator. Lectures on Partial Differential Equations. New Stud Adv Math, Vol 2. Somerville: Int Press, 2003, 223–235

    Google Scholar 

  39. Yau S T. Gap of the first two eigenvalues of the Schrödinger operator with nonconvex potential. Mat Contemp, 2008, 35: 267–285

    MATH  MathSciNet  Google Scholar 

  40. Yu Q H, Zhong J Q. Lower bounds of the gap between the first and second eigenvalues of the Schrödinger operator. Trans Amer Math Soc, 1986, 294(1): 341–349

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y. Sharp lower bound of spectral gap for Schrödinger operator and related results. Front. Math. China 10, 1283–1312 (2015). https://doi.org/10.1007/s11464-015-0455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-015-0455-1

Keywords

MSC

Navigation