Skip to main content
Log in

Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor

Frontiers of Electrical and Electronic Engineering

Abstract

An attenuated iterative reliability-based majority-logic (AIML) decoding algorithm for low-density parity-check (LDPC) codes is proposed, which pertains to hybrid decoding schemes. The algorithm is devised based on the orthogonal check-sums of one-step majoritylogic (OSMLG) decoding algorithm in conjunction with certain of reliability measures of the received symbols. Computation of reliability measure of the syndrome sum is refined by introducing an attenuation factor. Simulation results show that, in binary-input additive white Gaussian noise (BI-AWGN) channel, the AIML decoding algorithm outperforms other popular iterative reliability-based majority-logic (IML) decoding algorithms with a slight increase in computational complexity. Within maximum iteration number of 5, the AIML algorithm can achieve almost identical error performance to sum-product algorithm (SPA). No error floor effect can be observed for the AIML algorithm down to the bit error rate (BER) of 10−8, while error floor appears for SPA around the BER of 10−7 even with maximum iteration number of 100. Furthermore, the inherent feature of parallel procession for AIML algorithm enforces the decoding speed in contrast to those serial decoding schemes, such as weighted bit-flipping (WBF) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gallager R G. Low-density parity-check codes. IRE Transactions on Information Theory, 1962, 8(1): 21–28

    Article  MathSciNet  MATH  Google Scholar 

  2. MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645–1646

    Article  Google Scholar 

  3. MacKay D J C. Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 1999, 45(2): 399–431

    Article  MathSciNet  MATH  Google Scholar 

  4. Tanner R M. A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 1981, 27(5): 533–547

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang J, Fossorier M P C. A modified weighted bit-flipping decoding of low density parity-check codes. IEEE Communications Letters, 2004, 8(3): 165–167

    Article  Google Scholar 

  6. Mobini N, Banihashemi A H, Hemati S. A differential binary message-passing LDPC decoder. In: Proceedings of IEEE Global Telecommunications Conference. 2007, 3: 1561–1565

    Google Scholar 

  7. Chen C Y, Huang Q, Kang J Y, Zhang L, Lin S. A binary messagepassing decoding algorithm for LDPC codes. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing. 2009, 424–430

  8. Huang Q, Kang J Y, Zhang L, Lin S, Abdel-Ghaffar K. Two reliability-based iterative majority-logic decoding algorithms for LDPC codes. IEEE Transactions on Communications, 2009, 57(12): 3597–3606

    Article  Google Scholar 

  9. Jiang M, Zhao C M, Shi Z H, Chen Y. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes. IEEE Communications Letters, 2005, 9(9): 814–816

    Article  Google Scholar 

  10. Guo F, Hanzo L. Reliability ratio based weighted bit-flipping decoding for LDPC codes. In: Proceedings of the 61st IEEE Vehicular Technology Conference. 2005, 1: 709–713

    Article  Google Scholar 

  11. Dong G Q, Li Y N, Xie N D, Zhang T, Liu H P. Candidate bit based bit-flipping decoding algorithm for LDPC codes. In: Proceedings of IEEE International Symposium on Information Theory. 2009, 2166–2168

  12. Lee C H, Wolf W. Implementation-efficient reliability ratio based weighted bit-flipping decoding for LDPC codes. Electronics Letters, 2005, 41(13): 755–757

    Article  Google Scholar 

  13. Chen J H, Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Transactions on Communications, 2002, 50(3): 406–414

    Article  Google Scholar 

  14. Wu X F, Ling C, Jiang M, Xu E Y, Zhao C M, You X H. New insights in weighted bit-flipping decoding. IEEE Transactions on Communications, 2009, 57(8): 2177–2180

    Article  Google Scholar 

  15. Wu X F, Ling C, Jiang M, Xu E Y, Zhao C M, You X H. Towards understanding weighted bit-flipping decoding. In: Proceedings of IEEE International Symposium on Information Theory. 2007, 1666–1670

  16. Lin S, Costello D J. Error Control Coding: Fundamentals and Applications. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004

    Google Scholar 

  17. Kou Y, Lin S, Fossorier M P C. Low density parity check codes based on finite geometries: A rediscovery and new results. IEEE Transactions on Information Theory, 2001, 47(7): 2711–2736

    Article  MathSciNet  MATH  Google Scholar 

  18. Proakis J G. Digital Communications. 5th ed. USA: McGraw-Hill Higher Education, 2008

    Google Scholar 

  19. Reed I S. A class of multiple-error-correcting codes and decoding scheme. IRE Transactions on Information Theory, 1954, 4(4): 38–49

    Article  Google Scholar 

  20. Massey J L. Threshold Decoding. Cambridge, MA: MIT Press, 1963

    Google Scholar 

  21. MacKay D J C. Encyclopedia of Sparse Graph Codes. Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

  22. Liu M H. Hybrid decoding for LDPC codes. Dissertation for the Master Degree. Beijing: Beijing Jiaotong University, 2010, 43–46 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

About this article

Cite this article

Liu, M., Zhang, L. Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor. Front. Electr. Electron. Eng. 7, 279–285 (2012). https://doi.org/10.1007/s11460-012-0195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11460-012-0195-x

Keywords

Navigation