Skip to main content
Log in

Electronic band structure from first-principles Green’s function approach: theory and implementations

  • Review Article
  • Published:
Frontiers of Chemistry in China

Abstract

Electronic band structure is one of the most important intrinsic properties of a material, and is in particular crucial in electronic, photo-electronic and photo-catalytic applications. Kohn-Sham Density-functional theory (KS-DFT) within currently available local or semi-local approximations to the exchange-correlation energy functional is problematic for the description of electronic band structure. Many-body perturbation theory based on Green’s function (GF) provides a rigorous framework to describe excited-state properties of materials. The central ingredient of the GF-based many-body perturbation theory is the exchangecorrelation self-energy, which accounts for all nonclassical electron-electron interaction effects beyond the Hartree theory, and formally can be obtained by solving a set of complicated integro-differential equations, named Hedin’s equations. The GW approximation, in which the self-energy is simply a product of Green’s function and the screened Coulomb interaction (W), is currently the most accurate first-principles approach to describe electronic band structure properties of extended systems. Compared to KS-DFT, the computational efforts required for GW calculations are much larger. Various numerical techniques or approximations have been developed to apply GW for realistic systems. In this paper, we give an overview of the theory of first-principles Green’s function approach in the GW approximation and review the state of the art for the implementation of GW in different representations and with different treatment of the frequency dependence. It is hoped that further methodological developments will be inspired by this work so that the approach can be applied to more complicated and scientifically more interesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hüfner, S., Photoelectron Spectroscopy: Prinples and Applications 3rd ed. Berlin: Springer, 2003

    Google Scholar 

  2. Onida, G.; Rubio, A., Rev. Mod. Phys. 2002, 74, 601–659

    Article  CAS  Google Scholar 

  3. Yu, P. Y.; Cardona, M., Fundamentals of semiconductors: physics and materials properties 3rd ed. Berlin: Springer, 2001

    Google Scholar 

  4. Parr, R. G.; Yang, W., Density-Functional Theory of Atoms and Molecules New York: Oxford University Press, 1989

    Google Scholar 

  5. Dreizler, R. M.; Gross, E. K. U., Density Functional Theory: An Approach to the Quantum Many-Body Problem Berlin: Springer-Verlag, 1990

    Google Scholar 

  6. Martin, R. M., Electronic Structure: Basic Theory and Practical Methods, Cambridge UK: Cambridge University Press, 2004

    Google Scholar 

  7. Aryasetiawan, F., in Anisimov, V. I., ed., Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation Gordon and Breach Science Publishers, 2000 (1)

  8. Fetter, A. L.; Walecka, J. D., Quantum theory of many-particle systems McGraw-Hill, New York, 1971

    Google Scholar 

  9. Hedin, L.; Lundqvist, B. I., Solid State Phys. 1969, 23, 1–181

    Article  CAS  Google Scholar 

  10. Hedin, L., Phys. Rev. 1965, 139, A796–A823

    Article  Google Scholar 

  11. Aryasetiawan, F.; Gunnarsson, O., Rep. Prog. Phys. 1998, 61, 237–312

    Article  CAS  Google Scholar 

  12. Hybertsen, M. S.; Louie, S. G., Phys. Rev. B 1986, 34, 5390–5413

    Article  CAS  Google Scholar 

  13. Godby, R. W.; Schlüter, M.; Sham, L. J., Phys. Rev. B 1988, 37, 10159–10175

    Article  Google Scholar 

  14. Faleev, S. V.; van Schilfgaarde, M.; Kotani, T., Phys. Rev. Lett. 2004, 93, 126406

    Article  Google Scholar 

  15. Bruneval, F.; Vast, N.; Reining, L., Phys. Rev. B 2006, 74, 045102

    Article  Google Scholar 

  16. Shishkin, M.; Marsman, M.; Kresse, G., Phys. Rev. Lett. 2007, 99, 246403

    Article  CAS  Google Scholar 

  17. Bruneval, F.; Gonze, X., Phys. Rev. B 2008, 78, 085125

    Article  Google Scholar 

  18. Hamann, D. R.; Vanderbilt, D., Phys. Rev. B 2009, 79, 045109

    Article  Google Scholar 

  19. Berger, J. A.; Reining, L.; Sottile, F., Phys. Rev. B 2010, 82, 2010

    Google Scholar 

  20. Umari, P.; Stenuit, G.; Baroni, S., Phys. Rev. B 2010, 81, 115104

    Article  Google Scholar 

  21. Samsonidze, G.; Jain, M.; Deslippe, J.; Cohen, M. L.; Louie, S. G., Phys. Rev. Lett. 2011, 107, 186404

    Article  Google Scholar 

  22. Jiang, H.; Gomez-Abal, R.; Rinke, P.; Scheffler, M., Phys. Rev. B 2010, 81, 085119

    Article  Google Scholar 

  23. Inkson, J. C., Many-body theory of solids: An Introduction New York: Plenum, 1983

    Google Scholar 

  24. Jiang, H. Acta., Acta. Phys. Chim. Sin 2010, 26, 1017

    CAS  Google Scholar 

  25. Arfken, G. B.; Weber, H. J., Mathematical Methods for Physicists ed. 5th ed. Academic Press, 2001

  26. Linderberg, J., Öhrn Propagators in Quantum Chemistry 2nd ed. John Wiley & Sons, 2004

  27. Zakrzewski, V. G.; Dolgounitcheva, O.; Zakjevskii, A. V.; Ortiz, J. V., Ann. Rep. Comput. Chem 2010, 6, 79–94

    Article  CAS  Google Scholar 

  28. Shishkin, M.; Kresse, G., Phys. Rev. B 2007, 75, 235102

    Article  Google Scholar 

  29. Baldereschi, A.; Tosatti, E., Solid State Commun. 1979, 29, 131–135

    Article  CAS  Google Scholar 

  30. Godby, R. W.; Schlüter, M.; Sham, L. J., Phys. Rev. B 1987, 36, 6497–6500

    Article  CAS  Google Scholar 

  31. Rojas, H. N.; Godby, R. W.; Needs, R. J., Phys. Rev. Lett. 1995, 74, 1827–1830

    Article  CAS  Google Scholar 

  32. Rieger, M. M.; Steinbeck, L.; White, I. D.; Rojas, H. N.; Godby, R. W., Comput. Phys. Commun. 1999, 117, 211–228

    Article  CAS  Google Scholar 

  33. Rohlfing, M.; Krüger, P.; Pollmann, J., Phys. Rev. Lett. 1995, 75, 3489–3492

    Article  CAS  Google Scholar 

  34. Blase, X.; Attaccalite, C.; Olevano, V. prb, 2011, 83: 115103

    Article  Google Scholar 

  35. Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular Electronic-Structure Theory John Wiley & Sons, 2000

  36. Foerster, D.; Koval, P.; Sanchez-Portal, D. J., Chem. Phys. 2011, 135, 074105

    CAS  Google Scholar 

  37. Gómez-Abal, R.; Li, X.; Scheffler, M.; Ambrosch-Draxl, C., Phys. Rev. Lett. 2008, 101, 106404

    Article  Google Scholar 

  38. Li, X., All-Electron G0W0 code based on FP-(L)APW + lo and applications Ph.D. thesis Free University of Berlin, 2008

  39. Li, G. L.; Yin, Z., Phys. Chem. Phys. Chem 2011, 13, 2824

    CAS  Google Scholar 

  40. Aryasetiawan, F., Phys. Rev. B 1992, 46, 13051–13064

    Article  CAS  Google Scholar 

  41. Kotani, T.; van Schilfgaarde, M., Solid State Commun. 2002, 121, 461–465

    Article  CAS  Google Scholar 

  42. Friedrich, C.; Schindlmayr, A.; Blügel, S.; Kotani, T., Phys. Rev. B 2006, 74, 045104

    Article  Google Scholar 

  43. Friedrich, C.; Blügel, S.; Schindlmayr, A. prb, 2010, 81: 125102

    Article  Google Scholar 

  44. Aryasetiawan, F.; Gunnarsson, O., Phys. Rev. B 1994, 49, 16214–16222

    Article  CAS  Google Scholar 

  45. Andersen, O. K., Phys. Rev. B 1975, 12, 3060–3083

    Article  CAS  Google Scholar 

  46. Aulbur, W. G.; Jönsson, L.; Wilkins, J. W., Solid State Phys. 2000, 54, 1–218

    Article  CAS  Google Scholar 

  47. Gatti, M.; Bruneval, F.; Olevano, V.; Reining, L., Phys. Rev. Lett. 2007, 99, 266402

    Article  Google Scholar 

  48. Vidal, J.; Botti, S.; Olsson, P.; Guillemoles, J.-F.; Reining, L. prl, 2010, 104: 056401

    Article  Google Scholar 

  49. Vidal, J.; Trani, F.; Bruneval, F.; Marques, M. A. L.; Botti, S. prl, 2010, 104: 136401

    Article  Google Scholar 

  50. Botti, S.; Kammerlander, D.; Marques, M. A. L. apl, 2011, 98: 241915

    Google Scholar 

  51. Gygi, F.; Baldereschi, A., Phys. Rev. Lett. 1989, 62, 2160–2163

    Article  CAS  Google Scholar 

  52. Massidda, S.; Continenza, A.; Posternak, M.; Baldereschi, A., Phys. Rev. Lett. 1995, 74, 2323–2326

    Article  CAS  Google Scholar 

  53. Massidda, S.; Continenza, A.; Posternak, M.; Baldereschi, A., Phys. Rev. B 1997, 55, 13494–13502

    Article  CAS  Google Scholar 

  54. Continenza, A.; Massidda, S.; Posternak, M., Phys. Rev. B 1999, 60, 15699–15704

    Article  CAS  Google Scholar 

  55. Johnson, D. J., Phys. Rev. B 1974, 9, 4475–4484

    Article  Google Scholar 

  56. Godby, R. W.; Needs, R. J. prl, 1989, 62: 1169

    Article  Google Scholar 

  57. von der Linden, W.; Horsch, P., Phys. Rev. B 1988, 37, 8351–8362

    Article  Google Scholar 

  58. Engel, G. E.; Farid, B., Phys. Rev. B 1993, 47, 15931–15934

    Article  CAS  Google Scholar 

  59. Jiang, H.; Engel, E. J., Chem. Phys. 2007, 127, 184108

    Google Scholar 

  60. Shishkin, M.; Kresse, G., Phys. Rev. B 2006, 74, 035101

    Article  Google Scholar 

  61. Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry New York: McGraw-Hill, 1989

    Google Scholar 

  62. Rinke, P.; Qteish, A.; Neugebauer, J.; Freysoldt, C.; Scheffler, M., N. J. Phys. 2005, 7, 126

    Article  Google Scholar 

  63. Rinke, P.; Qteish, A.; Neugebauer, J.; Scheffler, M. phys. stat. sol. (b), 2008, 245: 929

    Article  CAS  Google Scholar 

  64. Miyake, T.; Zhang, P.; Cohen, M. L.; Louie, S. G., Phys. Rev. B 2006, 74, 245213

    Article  Google Scholar 

  65. Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Phys. Rev. Lett. 2009, 102, 126403

    Article  Google Scholar 

  66. Jiang, H.; Gomez-Abal, R. I.; Rinke, P.; Scheffler, M., Phys. Rev. B 2010, 82, 045108

    Article  Google Scholar 

  67. Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F., Phys. Rev. B 2008, 77, 184408

    Article  Google Scholar 

  68. Caramella, L.; Onida, G.; Finocchi, F.; Reining, L.; Sottile, F., Phys. Rev. B 2007, 75, 205405

    Article  Google Scholar 

  69. Schütz, M.; Hetzer, G.; Werner, H. J., J. Chem. Phys. 1999, 111, 5691

    Article  Google Scholar 

  70. Ayala, P. Y.; Scuseria, G. E. J., Chem. Phys. 1999, 110, 3660

    Article  CAS  Google Scholar 

  71. Chiodo, L.; Garcia-Lastra, J. M.; Iacomino, A.; Ossicini, S.; Zhao, J.; Petek, H.; Rubio, A. prb, 2010, 82: 045207

    Article  Google Scholar 

  72. Kang, W.; Hybertsen, M. S., Phys. Rev. B 2010, 82, 085203

    Article  Google Scholar 

  73. Wang, H.; Wu, F.; Jiang, H. J., PhysChemComm 2011, 115, 16180

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

About this article

Cite this article

Jiang, H. Electronic band structure from first-principles Green’s function approach: theory and implementations. Front. Chem. China 6, 253–268 (2011). https://doi.org/10.1007/s11458-011-0261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-011-0261-6

Keywords

Navigation