Skip to main content
Log in

Assessing the progress of desertification of the southern edge of Chihuahuan Desert: A case study of San Luis Potosi Plateau

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

The aim of this study is to establish if the San Luis Potosi Plateau (SLPP), which is part of the southern edge of the Chihuahuan Desert, is generating desertification processes, indicating a progression of the desert toward the central part of Mexico. Therefore, we analyzed the temporal evolution of four environmental indicators of desertification: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Iron Oxides Index (IO) and Surface Temperature (ST). Landsat TM images are used to cover a period from 1990 to 2011. A new equation of total balance is proposed to generate an image of the overall evolution of each factor which is applied to get a probability map of desertification. The evolution of NDVI, NDWI and IO shows a behavior almost stable over the time. In contrast, the ST shows a slight increase. The outcomes of this study confirm periods of vegetation re-greening and 8.80% of the SLPP has the highest probability to develop desertification. The most affected area is the portion west of the region, and the east and south are the least affected areas. The results suggest a slight advance of the desert, although most of the area doesn’t have the necessary conditions to develop desertification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becerril-Piña R, Mastachi-Loza C A, González-Sosa E et al., 2015. Assessing desertification risk in the semi-arid highlands of central Mexico. Journal of Arid Environments, 120: 4–13. doi: 10.1016/j.jaridenv.2015.04.006.

    Article  Google Scholar 

  • Chander G, Markham B L, Helder D L, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5): 893–903. doi: 10.1016/j.rse.2009.01.007.

    Article  Google Scholar 

  • Collado D A, Chuvieco E, Camarasa A, 2002. Satellite remote sensing analysis to monitor desertification processes in the crop-rageland boundary of Argentina. Journal of Arid Environments, 52(1): 121–133. doi: 10.1006/jare.2001.0980.

    Article  Google Scholar 

  • Dardel C, Kergoat L, Hiernaux P et al., 2014. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sensing of Environment, 140: 350–364. doi: 10.1016/j.rse.2013.09.011.

    Article  Google Scholar 

  • Díaz-Padilla G, Sánchez-Cohen I, Guajardo-Panes R A et al., 2011. Mapping of the aridity index and its populations distribution in Mexico. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 17(SPE): 267–275. doi: 10.5154/r.rchscfa.2010.09.069.

    Article  Google Scholar 

  • De Waroux Y L P, Lambin E F, 2012. Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Applied Geography, 32(2): 777–786. doi: 10.1016/j.apgeog.2011.08.005.

    Article  Google Scholar 

  • Dorn R I, 1986. Rock varnish as an indicator of aeolian environmental change. In: Nickling W G (ed.). Aeolian Geomorphology. Boston: Allen & Unwin, p. 291–307.

    Google Scholar 

  • Drury S, 1987. Image Interpretation in Geology. London: Allen and Unwin, p. 243.

    Book  Google Scholar 

  • Ezcurra E, 2006. Global Deserts Outlook. United Nations Environment Programme (UNEP): Nairobi, 148 p. http://www.unep.org/geo/gdoutlook/.

    Google Scholar 

  • Galindo A S, García M E, 1986. Usos del mezquite (Prosopis L.) en el Altiplano Potosino. Agrociencia, 63: 7–16.

    Google Scholar 

  • Gamo M, Shinoda M, Maeda T, 2013. Classification of arid lands, including soil degradation and irrigated areas, based on vegetation and aridity indices. International Journal of Remote Sensing, 34(19): 6701–6722. doi: 10.1080/01431161.2013.805281.

    Article  Google Scholar 

  • Gao B C, 1996. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257–266. doi: 10.1016/S0034-4257(96)00067-3.

    Article  Google Scholar 

  • Granados-Sánchez D, Hernández-García M Á, Vázquez-Alarcón A et al., 2013. The processes of desertification and arid regions. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 19(1): 45–66. doi: 10.5154/r.rchscfa.2011.10.077.

    Article  Google Scholar 

  • Haboudane D, Bonn F, Royer A et al., 2002. Land degradation and erosion risk mapping by fusion of spectrally-based information and digital geomorphometric attributes. International Journal of Remote Sensing, 23(18): 3795–3820. doi: 10.1080/01431160110104638.

    Article  Google Scholar 

  • Helldén U, 1992. Desertification: Time for an assessment. Ambio, 20: 372–383. http://www.jstor.org/stable/4313868.

    Google Scholar 

  • Helldén U, Tottrup C, 2008. Regional desertification: A global synthesis. Global and Planetary Change, 64(3/4): 169–176. doi: 10.1016/j.gloplacha.2008.10.006.

    Article  Google Scholar 

  • Hernández H M, Gómez-Hinostrosa C, Bárcenas R T, 2001. Diversity, spatial arrangement, and endemism of Cactaceae in the Huizache area, a hot-spot in the Chihuahuan Desert. Biodiversity & Conservation, 10(7): 1097–1112. doi: 10.1023/A:1016606216041.

    Article  Google Scholar 

  • Huber-Sannwald E, Maestre F T, Herrick J E et al., 2006. Ecohydrological feedbacks and linkages associated with land degradation: A case study from Mexico. Hydrological Processes, 20(15): 3395–3411. doi: 10.1002/hyp.6337.

    Article  Google Scholar 

  • Huete A R, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysicial performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83: 195–213. doi: 10.1016/S0034-4257(02)00096-2.

    Article  Google Scholar 

  • INEGI, 2012. Anuario de estadísticas por entidad federativa. Aguascalientes, México. Available at: http://www.inegi.org.mx/prod_serv/contenidos/espanol/bvinegi/productos/integracion/pais/aepef/2012/aepef2012.pdf. Accessed 15 August 2013.

    Google Scholar 

  • Li H, Wang X F, Gao Y Q, 2004. Analysis and assessment of land desertification in Xinjiang based on RS and GIS. Journal of Geographical Sciences, 14(2): 159–166. doi: 10.1007/BF02837531.

    Article  Google Scholar 

  • Miranda-Aragón L, Treviño-Garza E J, Jiménez-Pérez J et al., 2012. NDVI-rainfall relationship using hyper-temporal satellite data in a portion of North Central Mexico (2000–2010). African Journal of Agricultural Research, 7(6): 1023–1033. doi: 10.5897/AJAR11.1674.

    Google Scholar 

  • Miranda-Aragón L, Treviño-Garza E J, Jiménez-Pérez J et al., 2013. Tasa de deforestación en San Luis Potosí, México (1993–2007). Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 19(2): 201–215. doi: 10.5154/r.rchscfa.2011.06.044.

    Article  Google Scholar 

  • Moreira-Rivera F, Martínez-Rodríguez L, Palacios-García R et al., 1996. Carta Geológico-Minera Matehuala (F14-1). 1a edición. Servicio Geológico Mexicano, Pachuca, Hidalgo, México.

    Google Scholar 

  • Null J, 2013. El Niño and La Niña years and intensities. Available at http://ggweather.com/enso/oni.htm. Accessed 20 September 2013.

    Google Scholar 

  • Ouedraogo I, Runge J, Eisenberg J et al., 2014. The re-greening of the Sahel: Natural cyclicity or human-induced change? Land, 3(3): 1075–1090. doi: 10.3390/land3031075.

    Article  Google Scholar 

  • Oyama M D, Nobre C A, 2004. Climatic consequences of a large-scale desertification in Northeast Brazil: A GCM simulation study. Journal of Climate, 17(16): 3203–3213. doi: 10.1175/1520-0442(2004)017<3203: CCOALD>2.0.CO;2.

    Article  Google Scholar 

  • Pando-Moreno M, Gutiérrez G, Maldonado H et al., 2002. Evaluación de los procesos de desertificación en una cuenca hidrológica del NE de México. Ciencia UANL, 5(4): 519–524. http://eprints.uanl.mx/id/eprint/1166.

    Google Scholar 

  • Reynolds J F, Smith D M S, Lambin E F et al., 2007. Global desertification: Building a science for dryland development. Science, 316(5826): 847–851. doi: 10.1126/science.1131634.

    Article  Google Scholar 

  • Roth D, Moreno-Sanchez R, Torres-Rojo J M et al., 2016. Estimation of human induced disturbance of the environment associated with 2002, 2008 and 2013 land use/cover patterns in Mexico. Applied Geography, 66: 22–34. doi: 10.1016/j.apgeog.2015.11.009.

    Article  Google Scholar 

  • Sánchez J M, Kustas W P, Caselles V et al., 2008. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sensing of Environment, 112(3): 1130–1143. doi: 10.1016/j.rse.2007.07.018.

    Article  Google Scholar 

  • Santini M, Caccamo G, Laurenti A et al., 2010. A multi-component GIS framework for desertification risk assessment by an integrated index. Applied Geography, 30(3): 394–415. doi: 10.1016/j.apgeog.2009.11.003.

    Article  Google Scholar 

  • Spatz D M, Taranik J V, Hsu L C, 1989. Differetiating volcanic rock assemblages using Landsat Thematic Mapper data-Influence of petrochemistry and desert varnish. Advances in Space Research, 9(1): 93–98. doi: 10.1016/0273-1177(89)90472-9.

    Article  Google Scholar 

  • Sun W, Shao Q, Liu J, 2013. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. Journal of Geographical Sciences, 23(6): 1091–1106. doi: 10.1007/s11442-013-1065-z.

    Article  Google Scholar 

  • Tao W, 2004. Progress in sandy desertification research of China. Journal of Geographical Sciences, 14(4): 387–400. doi: 10.1007/BF02837482.

    Article  Google Scholar 

  • Tereshchenko I, Zolotokrylin A N, Titkova T B et al., 2012. Seasonal variation of surface temperature-modulating factors in the Sonoran Desert in northwestern Mexico. Journal of Applied Meteorology and Climatology, 51(8): 1519–1530. doi: 10.1175/JAMC-D-11-0160.1.

    Article  Google Scholar 

  • Tucker C J, Dregne H E, Newcombe W W, 1991. Expansion and contraction of the Sahara desert from 1980 to 1990. Science, 253: 299–301. doi: 10.1126/science.253.5017.299.

    Article  Google Scholar 

  • USDA-NRCS, 1998. Estimating soil moisture by feel and appearance. Program Aid No.1619. USDA-NRCS, Washington, DC.

    Google Scholar 

  • Ustin S L, Palacios-Orueta A, Whiting M L et al., 2009. Remote sensing based assessment of biophysical indicators for land degradation and desertification. In: Röder A, Hill J (eds.). Tecent Advances in Remote Sensing and Geoinformation Processing for Land Degradation Assessment. London: CRC Press, 15–44

    Google Scholar 

  • Xu D, Li C, Zhuang D et al., 2011. Assessment of the relative role of climate change and human activities in desertification: A review. Journal of Geographical Sciences, 21(5): 926–936. doi: 10.1007/s11442-011-0890-1.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by PRODEP through the financing program for new full-time professors, through the convention PROMEP/103.5/13/6575. The authors are grateful to MSci. Marco Antonio Rojas-Beltran by his determined support in the field verification and the capture of pictures of the study zone. We also wish to thank the corrections and suggestions from reviewers because their comments helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Noyola-Medrano.

Additional information

Foundation: Program for Professional Development of Professors (PRODEP) through the convention PROMEP/103.5/13/6575

Author: Cristina Noyola-Medrano (1970–), specialized in natural resource and environmental remote sensing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noyola-Medrano, C., Martínez-Sías, V.A. Assessing the progress of desertification of the southern edge of Chihuahuan Desert: A case study of San Luis Potosi Plateau. J. Geogr. Sci. 27, 420–438 (2017). https://doi.org/10.1007/s11442-017-1385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-017-1385-5

Keywords

Navigation