Skip to main content
Log in

Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

A wide variety of studies have estimated the magnitude of global terrestrial net primary production (NPP), but its variations, both spatially and temporally, still remain uncertain. By using an improved process-based terrestrial ecosystem model (DLEM, Dynamic Land Ecosystem Model), we provide an estimate of global terrestrial NPP induced by multiple environmental factors and examine the response of terrestrial NPP to climate variability at biome and global levels and along latitudes throughout the first decade of the 21st century. The model simulation estimates an average global terrestrial NPP of 54.6 Pg C yr–1 during 2000–2009, varying from 52.8 Pg C yr–1 in the dry year of 2002 to 56.4 Pg C yr–1 in the wet year of 2008. In wet years, a large increase in terrestrial NPP compared to the decadal mean was prevalent in Amazonia, Africa and Australia. In dry years, however, we found a 3.2% reduction in global terrestrial NPP compared to the decadal mean, primarily due to limited moisture supply in tropical regions. At a global level, precipitation explained approximately 63% of the variation in terrestrial NPP, while the rest was attributed to changes in temperature and other environmental factors. Precipitation was the major factor determining inter-annual variation in terrestrial NPP in low-latitude regions. However, in mid- and high-latitude regions, temperature variability largely controlled the magnitude of terrestrial NPP. Our results imply that projected climate warming and increasing climate extreme events would alter the magnitude and spatiotemporal patterns of global terrestrial NPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlström A, Miller PA, Smith B, 2012. Too early to infer a global NPP decline since 2000. Geophysical Research Letters, 39(15). doi: 10.1029/2012GL0523–6.

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329(5993): 834–838. doi: 10.1126/science.1184-84.

    Article  Google Scholar 

  • Bonan GB, 1996. Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide. Technical note: National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.

    Google Scholar 

  • Chen G, Tian H, Zhang C et al., 2012. Drought in the Southern United States over the 20th century: Variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change, 114(2): 379–397. doi: 10.1007/s10584-012-0410.

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529–533. doi: 10.1038/nature039-2.

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C et al., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2): 107–136. doi: 10.1016/0168-vn1923(91)90002-8.

    Article  Google Scholar 

  • Costanza R, d'Arge R, Groot RD et al., 1998. The value of the world's ecosystem services and natural capital. Ecological Economics, 25: 3–15.

    Article  Google Scholar 

  • Cramer W, Kicklighter D, Bondeau A et al., 1999. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biology, 5(S1): 1–15. doi: 10.1046/j.1365-2486. 1999.00009.x.

    Article  Google Scholar 

  • Dentener F, 2006. Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set. Available on-line (http://daac. ornl. gov/) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA.

    Book  Google Scholar 

  • Dermody O, 2006. Mucking through multifactor experiments: Design and analysis of multifactor studies in global change research. New Phytologist, 172(4): 598–600. doi: 10.1111/j.1469-8137.2006.01921.x.

    Article  Google Scholar 

  • Farquhar G, von Caemmerer SV, Berry J, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78–90. doi: 10.1007/BF0038-231.

  • Felzer B, Kicklighter D, Melillo J et al., 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus B, 56(3): 230–248. doi: 10.1111/j.1600-0889.2004.00097.x.

    Article  Google Scholar 

  • Huntzinger D, Post WM, Wei Y et al., 2012. North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 232: 144–157. doi: 10.1016 j.ecolmodel. 2012.02-004.

    Article  Google Scholar 

  • Jung M, Henkel K, Herold M et al., 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101(4): 534–553. doi: 10.1016/j.rse.2006.01-020.

    Article  Google Scholar 

  • Klein Goldewijk K, Beusen A, Van Drecht G et al., 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1): 73–86. doi: 10.1111/j.1466-8238.2010.00587.x.

    Article  Google Scholar 

  • Lewis SL, 2006. Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465): 195–210. doi: 10.1098/rstb.2005-1711.

    Article  Google Scholar 

  • Liu M, Tian H, Yang Q et al., 2013. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resources Research, 49(4): 1988–2012. doi: 10.1002/ wrcr.201-0.

    Article  Google Scholar 

  • Lu C, Tian H, 2013. Net greenhouse gas balance in response to nitrogen enrichment: Perspectives from a coupled biogeochemical model. Global Change Biology, 19(2): 571–588. doi: 10.1111/gcb.120-9.

    Article  Google Scholar 

  • Lu C, Tian H, Liu M et al., 2012. Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes. Ecological Applications, 22(1): 53–75. doi: 10.1890/10-1685-1.

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW et al., 1993. Global climate change and terrestrial net primary production. Nature, 363(6426): 234–240. doi: 10.1016/j.scitotenv.2004.03-009.

    Article  Google Scholar 

  • Mohamed M, Babiker IS, Chen Z et al., 2004. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment, 332(1): 123–1–7.

    Google Scholar 

  • Murphy PG, Lugo AE, 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 67–88. doi: 10.1146/annurev.es.17.110186.0004-5.

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 10.1126/science.1082-50.

    Article  Google Scholar 

  • Norby RJ, Luo Y, 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162(2): 281–293. doi: 10.1111/j.1469-8137.2004.01047.x.

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ et al., 2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406(6799): 978–981. doi: 10.1038/3502-137.

    Article  Google Scholar 

  • Pan S, Tian H, Dangal SR et al., 2014a. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. PloS One, 9, e112810, doi: 10.1371/journal.pone.0112–10.

    Article  Google Scholar 

  • Pan S, Tian H, Dangal SR et al., 2014b. Modeling and monitoring terrestrial primary production in a changing global environment: Toward a multiscale synthesis of observation and simulation. Advances in Meteorology, 17. doi: 10.1155/2014/9659–6.

    Google Scholar 

  • Piacentini M, Rosina K, 2012. Measuring the Environmental Performance of Metropolitan Areas with Geographic Information Sources. OECD Publishing.

    Google Scholar 

  • Potter CS, Klooster S, Genovese V, 2012. Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2): 365–378. doi: 10.1007/s10584-012-0460-2.

    Article  Google Scholar 

  • Raupach M, Canadell J, Quéré CL, 2008. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences, 5(6): 1601–1613. doi: 10.5194/bg-5-1601-2008.

    Article  Google Scholar 

  • Ren W, Tian H, Liu M et al., 2007. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. Journal of Geophysical Research: Atmospheres (1984–2012): 112(D22). doi: 10.1029/2007JD0085-1.

    Google Scholar 

  • Ren W, Tian H, Tao B et al., 2011. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. Global Ecology and Biogeography, 20(3): 391–406. doi: 10.1111/j.1466-8238.2010.00606.x.

    Article  Google Scholar 

  • Ruimy A, Dedieu G, Saugier B, 1996. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 10(2): 269–285. doi: 10.1029/96GB003-9.

    Article  Google Scholar 

  • Running SW, Nemani RR, Heinsch FA et al., 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547–560. doi: 10.1641/0006-3568.

    Article  Google Scholar 

  • Saxton K, Rawls W, 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5): 1569–1578. doi: 10.2136/sssaj2005-0117.

    Article  Google Scholar 

  • Sellers P, Randall D, Collatz G et al., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. Journal of Climate, 9(4): 676–705. doi: 10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N et al., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015–2039. doi: 10.1111/j.1365-2486.2008.01626.x.

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2): 161–185. doi: 10.1046/j.1365-2486.2003.00569.x.

    Article  Google Scholar 

  • Song X, Tian H, Xu X et al., 2013. Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century. Ecosphere, 4(7): art88. doi: 10.1890/ES12-00398–1.

    Article  Google Scholar 

  • Tian H, Chen G, Liu M et al., 2010a. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. Forest Ecology and Management, 259(7): 1311–1327. doi: 10.1016/j.foreco.2009.10-009.

    Article  Google Scholar 

  • Tian H, Chen G, Zhang C et al., 2012. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States. Ecosystems, 15(4): 674–694. doi: 10.1007/s10021-012-9539-x.

    Article  Google Scholar 

  • Tian H, Hall CA, Qi Y, 1998. Modeling primary productivity of the terrestrial biosphere in changing environments: Toward a dynamic biosphere model. Critical Reviews in Plant Sciences, 17(5): 541–5–7.

    Article  Google Scholar 

  • Tian H, Liu M, Zhang C et al., 2010b. The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change. Acta Geographica Sinica, 65(9): 1027–1047. (in Chinese)

    Google Scholar 

  • Tian H, Melillo J, Kicklighter D et al., 2000. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology and Biogeography, 9(4): 315–335. doi: 10.1046/j.1365-2699.2000.00198.x.

    Article  Google Scholar 

  • Tian H, Melillo J, Lu C et al., 2011. China's terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochemical Cycles, 25(1). doi: 10.1029/2010GB0038-8.

    Google Scholar 

  • Tian H, Xu X, Liu M et al., 2010c. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences, 7(9): 2673–2694. doi: 10.5194/bg-7-2673-2010.

    Article  Google Scholar 

  • Van der Wer GR, Randerson JT, Collatz GJ et al., 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 303(5654): 73–76. doi: 10.1126/science.1090-53.

    Article  Google Scholar 

  • Wang W, Dungan J, Hashimoto H et al., 2011. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. Primary production. Global Change Biology, 17(3): 1350–1366. doi: 10.1111/j.1365-2486.2010.02309.x.

    Article  Google Scholar 

  • Wei Y, Liu S, Huntzinger D et al., 2013. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project–Part 2: Environmental driver data. Geoscientific Model Development Discussions, 6(4): 5375–5422. doi: 10.5194/gmdd-6-5375-2013.

    Article  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW et al., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2): 927–942. doi: 10.1111/j.1365-2486.2010.02302.x.

    Article  Google Scholar 

  • Xu X, Tian H, Zhang C et al., 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences Discussions, 7(4): 5383–5428. doi: 10.5194/bgd-7-5383-2010.

    Article  Google Scholar 

  • Zeng N, Mariotti A, Wetzel P, 2005. Terrestrial mechanisms of interannual CO2 variability. Global Biogeochemical Cycles, 19(1): doi: 10.1029/2004GB0022–3.

    Article  Google Scholar 

  • Zhang C, Tian H, Chappelka AH et al., 2007. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. Environmental Pollution, 149(3): 336–347. doi: 10.1016/ j.envpol.2007.05-028.

    Article  Google Scholar 

  • Zhang C, Tian H, Chen G et al., 2012. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 164: 89–101. doi: 10.1016/j.envpol.2012.01-020.

    Article  Google Scholar 

  • Zhang C, Tian H, Wang Y et al., 2010. Predicting response of fuel load to future changes in climate and atmospheric composition in the Southern United States. Forest Ecology and Management, 260(4): 556–564. doi: 10.1016/j.foreco.2010.05-012.

    Article  Google Scholar 

  • Zhao M, Running SW, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science.1192-66.

    Article  Google Scholar 

  • Zscheischler J, Michalak AM, Schwalm C et al., 2014. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 28(6): 585–600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufen Pan.

Additional information

Foundation: NSF Decadal and Regional Climate Prediction using Earth System Models, No.AGS-1243220; NSF Dynamics of Coupled Natural and Human Systems, No.1210360; NSF Computer and Network Systems, No.CNS-1059376; NASA Land Cover/Land Use Change Program, No.NNX08AL73G S01; NASA Interdisciplinary Science Program, No.NNX10AU06G, No.NNX11AD47G

Author: Pan Shufen, PhD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Tian, H., Dangal, S.R.S. et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 25, 1027–1044 (2015). https://doi.org/10.1007/s11442-015-1217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-015-1217-4

Keywords

Navigation