Skip to main content
Log in

Atmospheric correction of HJ-1 A/B CCD over land: Land surface reflectance calculation for geographical information product

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

This paper proposed a method to retrieve the land surface reflectance from the HJ-1A/B CCD data. The aerosol optical depth (AOD), the most important factor affecting the atmospheric correction of CCD images at all bands, is proposed to retrieve from the CCD imagery by the approach of dense dark vegetation (DDV) method. A look-up table in terms of the transmittances, the path radiances and the atmospheric spherical albedo as functions of the AOD was established for a variety of sun-sensor geometry and aerosol loadings. The atmospheric correction is then achieved with the look-up table and the MODIS surface reflectance output (MOD09) as the priori datasets. Based on the retrieved AOD and the look-up table of atmospheric correction coefficients, the land surface reflectance was retrieved for the HJ-1A/B data according to the atmospheric radiative transfer equation. Some in-situ measurement Data for Yanzhou of Shandong province in East China and MODIS land surface reflectance products MOD09 are used to preliminarily validate the proposed method. The results show that the proposed method can remove effectively the atmospheric contributions, and the overall accuracy of the retrieval land surface reflectance can be improved substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berk A, Bernstein L S, Robertson D C, 1989. MODTRAN: A moderate resolution model for LOWTRAN7, Report GL-TR-89-0122, Air Force Geophys. Lab, Bedford, MA.

    Google Scholar 

  • Bréon F M, Deuzé J L, Tanré D, 1997. Validation of space borne estimates of aerosol loading from sun photometer measurements with emphasis on polarization. Journal of Geophysical Research, 102: 17187–17195.

    Article  Google Scholar 

  • Durkee P A, Pfeil F, Frost E et al., 2006. Global analysis of aerosol particle characteristics. Atmos. Env., 25(11): 2457–2471.

    Article  Google Scholar 

  • Haan J F de, Hovenier J W, Kokke J M M et al., 1991. Removal of atmospheric influences on satellite borne imagery: A radiative transfer approach. Remote Sensing of Environment, 37: 1–21.

    Article  Google Scholar 

  • Hadjimitsis D G, Clayton C R I, Retails A, 2009. The use of selected pseudo-invarient targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation, 11(3): 192–200.

    Article  Google Scholar 

  • Hagolle O, Dedieu G, Mougenot B et al., 2008.Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images. Remote Sensing of Environment, 112: 1689–1701.

    Article  Google Scholar 

  • Higurashi A, Nakajima T, 1999. Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR. Journal of the Atmospheric Science, 56(7): 924–941.

    Article  Google Scholar 

  • Holben B N, Tanre D, Smirnov A et al., 2001. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research: Atmospheres, 106(D11): 12067–12097.

    Article  Google Scholar 

  • Holben B N, Vermote E, Kaufman Y J et al., 1992. Aerosol retrieval over land from AVHRR data: Application for atmospheric correction. IEEE Trans. Geosci. Remote Sens., 30: 212–222.

    Article  Google Scholar 

  • Holben B N, Vermote E, Kaufman Y J et al., 1998. AERONET: A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1–16.

    Article  Google Scholar 

  • Husar R B, Prospero J M, Stowe L L, 1997. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical depth operational product. J. Geophys. Res., 102(D14): 16, 889–16, 909.

    Article  Google Scholar 

  • Isaacs R G, Vogelmann A M, 1988. Multispectral sensor data simulation modeling based on the multiple scattering LOWTRAN code. Remote Sensing of Environment, 26(1): 75–99.

    Article  Google Scholar 

  • Kaufman Y J, 1993. Measurements of the aerosol optical thickness and the path radiance: Implications on aerosol remote sensing and atmospheric corrections. J. Geophys. Res., 98: 2677–2692.

    Article  Google Scholar 

  • Kaufman Y J, Sendra C, 1988. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sensing, 9(8): 1357–1381.

    Article  Google Scholar 

  • Kaufman Y J, Wald A E, Remer L A et al., 1997. The MODIS 2.1-μm channel — correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5): 1286–1298.

    Article  Google Scholar 

  • Kokhanovsky A A, Breon F M, Cacciari A et al., 2007. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos. Research, 85: 372–394.

    Article  Google Scholar 

  • Levy R C, Remer L A, Mattoo S et al., 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13): 1984–2012.

    Google Scholar 

  • Liang S L, Fang H L, Chen M Z et al., 2001. Atmospheric correction of landsat ETM+ land surface Imagery (Part I): Methods. IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2490–2498.

    Article  Google Scholar 

  • Moran M S, Jackson R D, Salter P N et al., 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41: 169–184.

    Article  Google Scholar 

  • Remer L A, Tanre D, Kaufman Y J, 2006. MODIS ATBD: Algorithm for remote sensing of tropospheric aerosol from MODIS. Collection5. Product ID: MOD04/MYD04-C005, 3–20.

    Google Scholar 

  • Richter R, 1996. A fast atmospheric correction algorithm applied to Landsat TM images. International Journal of Remote Sensing, 11: 159–166.

    Article  Google Scholar 

  • Smith H J P, Dube D J, Gardner M E et al., 1987. FASCODE — Fast Atmospheric Signature Code (Spectral Transmittance and Radiance). Air Force Geophysics Laboratory, AFGL-TR-78-0081.

    Google Scholar 

  • Sun L, Sun C K, Liu Q H et al., 2010. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Science China Earth Science, 53(suppl.1): 74–80.

    Article  Google Scholar 

  • Vermote E, Tanre D, Deuze J L et al., 2006. Second simulation of a satellite signal in the solar spectrum-vector (6SV). IEEE Trans Geosci Remote Sens., 1–243.

    Google Scholar 

  • Vermote E F, Vermeulen A, 1999. Atmospheric correction algorithm: Spectral reflectances (MOD09) Version 4.0. USA: NASA contract NAS5-96062.

    Google Scholar 

  • Wang Q, Wu C Q, Li Q, 2010. Environment Satellite 1 and its application in the environmental monitoring. Journal of Remote Sensing, 14(1): 104–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoyan Fu.

Additional information

Foundation: National High Technology Research and Development Program of China, No.2012AA12A302

Author: Fu Qiaoyan (1970–), Professor, specialized in vicarious calibration and quantitative application studies of satellites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Min, X., Sun, L. et al. Atmospheric correction of HJ-1 A/B CCD over land: Land surface reflectance calculation for geographical information product. J. Geogr. Sci. 24, 1083–1094 (2014). https://doi.org/10.1007/s11442-014-1140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-014-1140-0

Keywords

Navigation