Skip to main content
Log in

Combined spheropolyhedral discrete element (DE)–finite element (FE) computational modeling of vertical plate loading on cohesionless soil

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a combined spheropolyhedral discrete element (DE)–finite element (FE) computational approach to simulating vertical plate loading on cohesionless soils such as gravels. The gravel particles are modeled as discrete elements, and the plate is modeled as a deformable FE continuum. The simulations provide a meaningful step toward better understanding how deformable bodies transmit loads to granular materials. The DE–FE contact algorithm is verified through comparison with an analytical solution for impact between two symmetric bars. A parametric study is conducted to ensure boundary effects are not significantly influencing the simulations. Numerical simulations are compared to experimental test results of lightweight deflectometer loading on a gravel base course with satisfactory agreement. Future developments of the approach intend to simulate wheel loading of military aircraft on unsurfaced airfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adam C, Adam D, Kopf F (2009) Computational validation of static and dynamic plate load testing. Acta Geotech 4(1):35–55

    Article  Google Scholar 

  2. ASTM (2013) Annual book of standards. Volume 04.03, road and paving materials. ASTM International, West Conshohocken, Pennsylvania

  3. Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128

    Article  MATH  Google Scholar 

  4. Chen H, Lei Z, Zang M (2014) LC-Grid: a linear global contact search algorithm for finite element analysis. Comput Mech 54(5):1285–1301

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho G-C, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602

    Article  Google Scholar 

  6. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  7. Dang HK, Meguid MA (2013) An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems. Int J Numer Anal Methods Geomech 37(2):130–149

    Article  Google Scholar 

  8. Effeindzourou A, Chareyre B, Thoeni K, Giacomini A, Kneib F (2016) Modelling of deformable structures in the general framework of the discrete element method. Geotext Geomembr 44(2):143–156

    Article  Google Scholar 

  9. Evans DJ, Murad S (1977) Singularity free algorithm for molecular dynamics simulation of rigid polyatomics. Mol Phys 34(2):327–331

    Article  Google Scholar 

  10. Fakhimi A (2009) A hybrid discrete–finite element model for numerical simulation of geomaterials. Comput Geotech 36(3):386–395

    Article  Google Scholar 

  11. Fleming PR (2000) Small-scale dynamic devices for the measurement of elastic stiffness modulus on pavement foundations. In: Tayabji SD, Lukanen EO (eds) Nondestructive testing of pavements and backcalculation of moduli: third volume, ASTM STP 1375. ASTM, West Conshohocken, pp 41–59

    Chapter  Google Scholar 

  12. Galindo-Torres SA, Pedroso DM, Williams DJ, Li L (2012) Breaking processes in three-dimensional bonded granular materials with general shapes. Comput Phys Commun 183(2):266–277

    Article  Google Scholar 

  13. Guo N, Zhao J (2014) A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Methods Eng 99(11):789–818

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo N, Zhao J (2016) Multiscale insights into classical geomechanics problems. Int J Numer Anal Methods Geomech 40:367–390

    Article  Google Scholar 

  15. Grasmick JG, Mooney MA, Surdahl RW, Voth M, Senseney C (2015) Capturing a layer response during the curing of stabilized earthwork using a multiple sensor lightweight deflectometer. J Mater Civ Eng 27(6):1–12

    Article  Google Scholar 

  16. Hopkins MA (2014) Polyhedra faster than spheres? Eng Comput 31(3):567–583

    Article  Google Scholar 

  17. Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276

    Article  MATH  Google Scholar 

  18. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Mineola

    MATH  Google Scholar 

  19. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  20. Kawamoto R, Ando E, Viggiani G, Andrade JE (2016) Level set discrete element method for three-dimensional computations with triaxial case study. J Mech Phys Solids 91:1–13

    Article  MathSciNet  Google Scholar 

  21. Li X, Wan K (2011) A bridging scale method for granular materials with discrete particle assembly—cosserat continuum modeling. Comput Geotech 38(4):1052–1068

    Article  Google Scholar 

  22. Lim K-W, Kawamoto R, Ando E, Viggiani G, Andrade JE (2016) Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment. Acta Geotech 11(2):243–253

    Article  Google Scholar 

  23. Lin X, Ng TT (1997) A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2):319–329

    Article  Google Scholar 

  24. Matsushima T, Chang CS (2011) Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granular Matter 13(3):269–276. doi:10.1007/s10035-011-0263-6

    Article  Google Scholar 

  25. Onate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193(27–29):3087–3128

    Article  MATH  Google Scholar 

  26. Pournin L, Liebling TM (2005) A generalization of distinct element method to tridimensional particles with complex shapes. In: García-Rojo R, Herrmann HJ, McNamara S (eds) Powders and grains (2005), vol 2. A.A.Balkema Publishers, Rotterdam, pp 1375–1378

  27. Regueiro RA (2007) Coupling particle to continuum regions of particulate material. In: Proceedings of IMECE2007, No. 42717, Seattle, WA, pp 1–6

  28. Regueiro RA, Duan Z, Yan B (2016) Overlapped coupling between spherical discrete elements and micropolar finite elements in one dimension using a bridging-scale decomposition for statics. Eng Comput 33(1):28–63

    Article  Google Scholar 

  29. Senseney CT, Mooney MA (2010) Characterization of a two-layer soil system using a light weight deflectometer with radial sensors. Transp Res Rec J Transp Res Board 2186:21–28

    Article  Google Scholar 

  30. Senseney CT, Grasmick J, Mooney MA (2015) Sensitivity of lightweight deflectometer deflections to layer stiffness via finite element analysis. Can Geotech J 52(7):961–970

    Article  Google Scholar 

  31. Smith IM, Griffiths DV (1998) Programing the finite element method. Wiley, New York

    Google Scholar 

  32. Stamp DH, Mooney MA (2013) Influence of lightweight deflectometer characteristics on deflection measurement. Geotech Test J 36(2):216–226

    Article  Google Scholar 

  33. Szuladzinski G (2009) Formulas for mechanical and structural shock and impact. CRC Press, Boca Raton

    Book  Google Scholar 

  34. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  35. Timoshenko S, Goodier J (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  36. Vennapusa P, White D (2009) Comparison of light weight deflectometer measurements for pavement foundation materials. ASTM Geotech Test J 32(3):239–251

    Google Scholar 

  37. Walton OR (1982) Explicit particle-dynamics model for granular materials. Lawrence Livermore National Lab, Livermore

    Google Scholar 

  38. Walton O, Braun R (1993) Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In: Joint DOE/NSF workshop on flow of particulates and fluids, Ithaca, NY

  39. Wellmann C, Wriggers P (2012) A two-scale model of granular materials. Comput Methods Appl Mech Eng 205–208(1):46–58

    Article  MathSciNet  MATH  Google Scholar 

  40. Yan B, Regueiro RA, Sture S (2010) Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets. Eng Comput 27(4):519–550

    Article  MATH  Google Scholar 

  41. Zhao C, Zang M (2014) Analysis of rigid tire traction performance on a sandy soil by 3D finite element–discrete element method. J Terrramech 55:29–37. doi:10.1016/j.jterra.2014.05.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Department of Defense (DoD) High Performance Computing Modernization Office (HPCMO) to the USAFA which funded hardware, and Grant FA7000-15-2-005 to the University of Colorado Boulder. The authors thank Cadet Pawin Sarabol for running numerous simulations during a summer internship at the University of Colorado Boulder. ZD, BZ, and RAR also acknowledge partial funding from ONR MURI Grant N00014-11-1-0691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Duan.

Additional information

Disclaimer: The views expressed in this paper are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senseney, C.T., Duan, Z., Zhang, B. et al. Combined spheropolyhedral discrete element (DE)–finite element (FE) computational modeling of vertical plate loading on cohesionless soil. Acta Geotech. 12, 593–603 (2017). https://doi.org/10.1007/s11440-016-0519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0519-8

Keywords

Navigation