Skip to main content
Log in

Influence of filling atoms on radial collapse and elasticity of carbon nanotubes under hydrostatic pressure

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

Using molecular mechanics and molecular dynamics simulations, we focus on the influence of filling atoms on radial collapse and elasticity of single-walled carbon nanotubes (SWNTs). It is shown that the filled argon (Ar) and silicon (Si) atoms can effectively improve the resistance to high pressure and radial elasticity of SWNT, which may attribute to the strong repulsive force from the filled Ar(Si) atoms. However, due to the strong interaction of Cu atoms, filling Cu atoms deteriorate SWNT’s radial elasticity. In addition, it is found that the phase transitions of the atoms filled in SWNT occur in the process of loading and unloading pressure, so that the electrical properties of the SWNTs filled with atoms change in the process of loading and unloading pressure. In view of the restorability of SWNT filled with Si atoms upon unloading, the filled SWNTs can be used to develop a new class of nano-electronic devices such as pressure sensor, relay and memory, etc.

利用分子力学和分子动力学方法系统地研究了填充原子对碳纳米管径向塌陷和弹性的影响。结果表明,填充在碳纳米管中氩/硅原子的排斥作用可以有效改进碳纳米管的径向塌陷和弹性。然而,由于铜原子之间存在很强的相互作用,所以填充铜原子虽然能够改进碳纳米管的径向抗压能力,但是破坏了碳纳米管的径向弹性。另外,研究发现填充在碳纳米管中的氩/硅/铜原子在加载和卸载过程中发生了相变,进而会使填充的碳纳米管的电学性质发生改变。利用硅原子填充的碳纳米管在卸载中的可恢复性可以开发新型的纳米电子器件,如压力传感器、继电器、存储器等。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang SY, Li XN, Zhang Y et al (2014) Electrochemically enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes in continuous flow mode. Chin Sci Bull 59:2890–2897

    Article  Google Scholar 

  2. Zhang M, Xu Q, Sang L et al (2014) A novel monoclinic manganite/multi-walled carbon nanotubes. Chin Sci Bull 59:2973–2979

    Article  Google Scholar 

  3. Ling CC, Xue QZ, Jing NN (2012) Fabrication of carbon nanotube/graphene core/shell nanostructures on SiO2 substrates using organic solvents: a molecular dynamics study. Chin Sci Bull 57:3030–3035

    Article  Google Scholar 

  4. Xu F, Mo XL, Wan S et al (2014) High-performance flexural fatigue of carbon nanotube yarns. Chin Sci Bull 59:3831–3834

    Article  Google Scholar 

  5. Tao L, Wang G, Fang Yu et al (2014) Different effects of subsrates on the morphologies of single-walled carbon nanotubes. Chin Sci Bull 59:2318–2323

    Article  Google Scholar 

  6. Che GL, Lakshmi BB, Martin CR et al (1999) Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15:750–758

    Article  Google Scholar 

  7. Svensson K, Olin H, Olsson E (2004) Nanopipettes for metal transport. Phys Rev Lett 93:145901

    Article  Google Scholar 

  8. Che RC, Peng LM, Duan XF et al (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405

    Article  Google Scholar 

  9. Terrones H, López UF, Munoz SU et al (2006) Magnetism in Fe-based and carbon nanostructures: theory and applications. Solid State Sci 8:303–320

    Article  Google Scholar 

  10. Winkler A, Muhl T, Menzel S et al (2006) Magnetic force microscopy sensors using iron-filled carbon nanotubes. J Appl Phys 99:104905

    Article  Google Scholar 

  11. Li YF, Hatakeyama R, Shishido J et al (2007) Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl Phys Lett 90:173127

    Article  Google Scholar 

  12. Borowiak PE, Mendoza E, Bachmatiuk A et al (2006) Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem Phys Lett 421:129–133

    Article  Google Scholar 

  13. Ajayan PM, Colliex C, Lambert JM et al (1994) Growth of manganese filled carbon nanofibers in the vapor phase. Phys Rev Lett 72:1722–1725

    Article  Google Scholar 

  14. Zhang GY, Wang EG (2003) Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett 82:1926–1928

    Article  Google Scholar 

  15. Gao XP, Zhang Y, Chen X et al (2004) Carbon nanotubes filled with metallic nanowires. Carbon 42:47–52

    Article  Google Scholar 

  16. Kim H, Sigmund W (2005) Iron particles in carbon nanotubes. Carbon 43:1743–1748

    Article  Google Scholar 

  17. Assmus T, Balasubramanian K, Burghard M et al (2007) Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Appl Phys Lett 90:173109

    Article  Google Scholar 

  18. Guo YF, Kong Y, Guo WL et al (2004) Structural transition of copper nanowires confined in single-walled carbon nanotubes. J Comput Theor Nanosci 1:93–98

    Google Scholar 

  19. Hwang HJ, Kwon OK, Kang JW (2004) Copper nanocluster diffusion in carbon nanotube. Solid State Commun 129:687–690

    Article  Google Scholar 

  20. Arcidiacono S, Walther JH, Poulikakos D et al (2005) Solidification of gold nanoparticles in carbon nanotubes. Phys Rev Lett 94:105502

    Article  Google Scholar 

  21. Li HY, Ren XB, Guo XY (2007) Monte Carlo studies on the filling process of carbon nanotubes with nickel. Chem Phys Lett 437:108–111

    Article  Google Scholar 

  22. Philp E, Sloan J, Kirkland AI et al (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791

    Article  Google Scholar 

  23. Wang L, Zhang HW, Zhang ZQ et al (2007) Buckling behaviors of single-walled carbon nanotubes filled with metal atoms. Appl Phys Lett 91:051122

    Article  Google Scholar 

  24. Sun FW, Li H (2011) Torsional strain energy evolution of carbon nanotubes and their stability with encapsulated helical copper nanowires. Carbon 49:1408–1415

    Article  Google Scholar 

  25. Sun FW, Li H, Liew KM (2010) Compressive mechanical properties of carbon nanotubes encapsulating helical copper nanowires. Carbon 48:1586–1591

    Article  Google Scholar 

  26. Elliott JA, Sandler JKW, Windle AH et al (2004) Collapse of single-wall carbon nanotubes is diameter dependent. Phys Rev Lett 92:095501

    Article  Google Scholar 

  27. Ling CC, Xue QZ, Jing NN et al (2012) Effect of functional groups on the radial collapse and elasticity of carbon nanotubes under hydrostatic pressure. Nanoscale 4:3894

    Article  Google Scholar 

  28. Ling CC, Xue QZ, Jing NN et al (2012) Collapse and stability of functionalized carbon nanotubes on Fe(100) surface. RSC Adv 2:7549–7556

    Article  Google Scholar 

  29. Ling CC, Xue QZ, Chu LY et al (2012) Radial collapse of carbon nanotubes without and with stone-wale defects under hydrostatic pressure. RSC Adv 2:12182–12189

    Article  Google Scholar 

  30. Ling CC, Xue QZ, Xia D et al (2014) Fullerene filling modulates carbon nanotube radial elasticity and resistance to high pressure. RSC Adv 4:1107–1115

    Article  Google Scholar 

  31. Pugno NM, Elliott JA (2012) Buckling of peapods, fullerenes and nanotubes. Phys E 44:944–948

    Article  Google Scholar 

  32. Weissmann M, García G, Kiwi M et al (2006) Theoretical study of iron-filled carbon nanotubes. Phys Rev B 73:125435

    Article  Google Scholar 

  33. Kang YJ, Choi J, Moon CY et al (2005) Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Phys Rev B 71:15441

    Google Scholar 

  34. Tit N, Dharma-wardana MWC (2003) Superconductivity in carbon nanotubes coupled to transition metal atoms. EPL 62:405–408

    Article  Google Scholar 

  35. Xue QZ, Shan MX, Tao YH et al (2014) N-doped porous graphene for carbon dioxide separation: a molecular dynamics study. Chin Sci Bull 59:3919–3925

    Article  Google Scholar 

  36. Sun H (1998) An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  Google Scholar 

  37. Sun H, Ren P, Fried J (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theory Polym Sci 8:229–246

    Article  Google Scholar 

  38. Wang Q, Duan W, Liew K et al (2007) Inelastic buckling of carbon nanotubes. Appl Phys Lett 90:033110

    Article  Google Scholar 

  39. Zheng QB, Geng Y, Wang SJ et al (2010) Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 48:4315–4322

    Article  Google Scholar 

  40. Grujicic M, Cao G, Roy WN et al (2004) Atomistic modeling of solubilization of carbon nanotubes by non-covalent functionalization with poly(pphenylenevinylene-co-2,5-dioctoxy-m-phenylenevinylene). Appl Surf Sci 227:349–363

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (ZR2014EMQ006), the Postdoctoral Science Foundation of China (2014M551983), the Open Foundation of National Engineering Research Center of Electromagnetic Radiation Control Materials (ZYGX2014K003-1), the Postdoctoral Applied Research Foundation of Qingdao City, the Qingdao Science and Technology Program (14-2-4-27-jch), and the Fundamental Research Funds for the Central Universities (14CX02019A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Cui Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 981 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, ZD., Ling, CC., Guo, QK. et al. Influence of filling atoms on radial collapse and elasticity of carbon nanotubes under hydrostatic pressure. Sci. Bull. 60, 1509–1516 (2015). https://doi.org/10.1007/s11434-015-0878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0878-9

Keywords

Navigation