Skip to main content
Log in

A first comprehensive evaluation of China’s GNSS-R airborne campaign: part II—river remote sensing

中国GNSS-R机载实验综合评估 第二部分:河流遥感

  • Article
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

The Global Navigation Satellite System Reflectometry (GNSS-R) has been proven to be a powerful technique for retrieving geophysical parameters of ocean and land. Airborne GNSS-R is an important experimental platform, because it is not only needed as validation for spaceborne application, but also possesses the advantages to be capable of remote sensing of small and medium scale targets, such as rivers and lakes. This paper presents an overview of China’s airborne GNSS-R campaign conducted on May 30, 2014, in Henan. The campaign has two objectives, i.e.: (1) to examine the capability of a GNSS-R payload developed by National Space Science Center, Chinese Academy of Sciences (NSSC, CAS) for airborne observations and (2) to study the algorithms for soil moisture and river remote sensing, including altimetry and flow velocity measurement. A previous paper has presented results of soil moisture retrieval as part I, and in this paper, initial results of the Yellow River remote sensing are presented as part II. This paper presents the river altimetry results and explores a new potential application of GNSS-R technology, which is used to detect the flow velocity of the river. The river surface height results observed by code delay altimetry method were consistent with the height results of GPS dual-frequency differential positioning altimetry. The GNSS-R altimetry results showed that decimeter level heights were achieved in 1-min sliding average. Comparing with in situ measurements, the GNSS-R flow velocity result was reasonable; the error was about 0.027 m/s, which indicated the validity and feasibility of using GNSS-R technique to detect river flow velocity.

摘要

全球卫星导航定位系统的反射信号(GNSS-R)遥感是反演陆地和海洋表面地球物理参数的有力工具。而机载GNSS-R是一个很重要的实验平台,因为它不仅可以为空基实验提供校准依据,而且在中小尺度目标(比如河流和湖泊)的遥感方面独具优势。本文描述了2014年5月30日在河南的一次机载实验。实验有两个目的:1)检测中国科学院国家空间科学中心研发的GNSS-R有效载荷的实验观测能力,2)研究土壤湿度测量和河流遥感的具体算法,其中河流遥感包括高度和流速测量。关于该次试验土壤湿度遥感的论文已经作为实验成果的第一部发表,此篇关于GNSS-R河流遥感的论文将作为实验成果的第二部分。试验结果表明:通过GNSS-R码相位延迟测高法对河流表面高度的测量结果与用GPS双频差分定位的结果相一致,一分钟的滑动平均结果可以达到分米级的精度。此外,本文发展了GNSS-R遥感的一个新领域,即GNSS-R河流流速测量,通过与现场的测量结果对比,GNSS-R的流速测量误差约0.027 m/s,从而证明了GNSS-R流速测量的可行性和有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martin-Neira M (1993) A passive reflectometry and interferometry system (PARIS)—application to ocean altimetry. ESA J-Eur Space Agency 17:331–355

    Google Scholar 

  2. Zavorotny VU, Voronovich AG (2000) Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans Geosci Remote Sens 38:951–964

    Article  Google Scholar 

  3. Rodriguez-Alvarez N, Aguasca A, Valencia E et al (2012) Snow thickness monitoring using gnss measurements. IEEE Geosci Remote Sens Lett 9:1109–1113

    Article  Google Scholar 

  4. Jin S, Komjathy A (2010) GNSS reflectometry and remote sensing: new objectives and results. Adv Space Res 46:111–117

    Article  Google Scholar 

  5. Martín-Neira M, Caparrini M, Font-Rossello J et al (2001) The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans Geosci Remote Sens 39:142–150

    Article  Google Scholar 

  6. Rius A, Aparicio JM et al (2002) Sea surface state measured using GPS reflected signals. Geophys Res Lett 29:2122–2140

    Article  Google Scholar 

  7. Wan W, Larson K, Small E et al (2015) Using geodetic GPS receivers to measure vegetation water content. GPS Solut 19:237–248

    Article  Google Scholar 

  8. Martin-Neira M, D’addio S, Buck C et al (2011) The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans Geosci Remote Sens 49:2209–2237

    Article  Google Scholar 

  9. Ruf C, Lyons A, Unwin M et al (2013) CYGNSS: enabling the future of hurricane prediction [remote sensing satellites]. Geosci Remote Sens 1:52–67

    Article  Google Scholar 

  10. Wickert J et al (2013) GEROS-ISS: GNSS reflectometry, radio occultation and scatterometry onboard the international space station. Tech Rep ESA LPSE, UK

    Google Scholar 

  11. Komjathy A, Zavorotny V, Axelrad P et al (2000) GPS signal scattering from sea surface: wind speed retrieval using experimental data and theoretical model. Remote Sens Environ 73:162–174

    Article  Google Scholar 

  12. Cardellach E, Ruffini G, Pino D et al (2003) Mediterranean balloon experiment: ocean wind speed sensing from the stratosphere, using GPS reflections. Remote Sens Environ 88:351–362

    Article  Google Scholar 

  13. Lowe ST, Zuffada C, LaBrecque JL et al (2000) An ocean-altimetry measurement using reflected GPS signals observed from a low altitude aircraft. Stein TI (ed) IGARSS 2000: IEEE 2000 international geoscience and remote sensing symposium, vol i–vi, proceedings. IEEE international geoscience and remote sensing symposium, Honolulu, July 2000. IEEE, New York, p 2185–2187

  14. Lowe ST, Zuffada C, Chao Y et al (2002) 5-cm precision aircraft ocean altimetry using GPS reflections. Geophys Res Lett 29:1301–1304

    Google Scholar 

  15. Rius A, Aparicio JM, Cardellach E et al (2002) Sea surface state measured using GPS reflected signals. Geophys Res Lett 29:3701–3704

    Article  Google Scholar 

  16. Ruffini G, Soulat F, Caparrini M et al (2004) The eddy experiment: accurate GNSS-R ocean altimetry from low altitude aircraft. Geophys Res Lett 31(L12306):1–4

    Google Scholar 

  17. Katzberg SJ, Torres O, Grant MS et al (2005) Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: results from SMEX02. Remote Sens Environ 100:17–28

    Article  Google Scholar 

  18. Masters D, Axelrad P, Katzberg S (2004) Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens Environ 9:507–520

    Article  Google Scholar 

  19. Zhou ZM, Fu Y (2008) Bohai GNSS-R aircraft experiment and the retrieve of sea surface wind. Geomat Inform Sci Wuhan Univ 33:241–244 (in Chinese)

    Google Scholar 

  20. Yang DK, Wang Y, Lu Y (2010) GNSS-R data acquisition system design and experiment. Chin Sci Bull 55:3842–3846

    Article  Google Scholar 

  21. Li WQ, Yang DK, Li ML et al (2011) Design and experiments of GNSS-R receiver system for remote sensing. Geomat Inform Sci Wuhan Univ 36:1204–1208 (in Chinese)

    Google Scholar 

  22. Li WQ, Yang DK, D’Addio S et al (2014) Partial interferometric processing of reflected GNSS signals for ocean altimetry. IEEE Geosci Remote Sens Lett 11:1509–1513

    Article  Google Scholar 

  23. Wan W, Bai WH, Zhao LM et al (2015) Initial results of China’s GNSS-R airborne campaign: soil moisture retrievals. Sci Bull 60:964–971

    Article  Google Scholar 

  24. Egido A, Paloscia S, Motte E et al (2014) Airborne GNSS-R polarimetric measurements for soil moisture and above-ground biomass estimation. IEEE J Sel Top Appl Earth Observ Remote Sens 7:1522–1532

    Article  Google Scholar 

  25. Rocken C, Kelecy TM, Born GH et al (1990) Measuring precise sea level from a buoy using the global positioning system. Geophys Res Lett 17:2145–2148

    Article  Google Scholar 

  26. Bai W, Sun Y, Fu Y et al (2012) GNSS-R open-loop difference phase altimetry: results from a bridge experiment. Adv Space Res 50:1150–1157

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Youth Natural Science Foundations of China (41405040 and 41405039), the Scientific Research and Equipment Development Project of Chinese Academy of Sciences (YZ201129) and the 12th Five-Year Plan of Civil Aerospace Technology Advanced Research Projects (Y1K0030044), and we highly appreciate professor Estel Cardellach from IEEC for her great suggestions. We also strongly acknowledge all the colleagues who worked for the airborne campaign, and they are Huang Li, Qing Xia, Wen Li, Qiangqiang Meng, Chuandong Xu.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangguang Meng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, W., Xia, J., Wan, W. et al. A first comprehensive evaluation of China’s GNSS-R airborne campaign: part II—river remote sensing. Sci. Bull. 60, 1527–1534 (2015). https://doi.org/10.1007/s11434-015-0869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0869-x

Keywords

关键词

Navigation