Skip to main content
Log in

Organic–inorganic nanohybrids for fluorescence, photoacoustic and Raman bioimaging

有机-无机纳米杂化材料在荧光、光声和拉曼生物成像领域的最新研究进展

  • Review
  • Chemistry
  • Published:
Science Bulletin

Abstract

Organic–inorganic nanohybrid materials represent a wide range of nanoscaled synthetic materials consisting of both organic and inorganic components that are linked together by covalent or non-covalent interactions, which have been widely employed in various fields such as optoelectronics, catalysis and biomedicine. As a result of this special combination, nanohybrid materials assemble numerous extraordinary features that provide great opportunities to improve their stability, multifunctions, biocompatibility, eco-friendliness and other physical and mechanical properties. This review highlights recent research developments of functional organic–inorganic nanohybrid materials and their specific applications in bioimaging including fluorescent, Raman, photoacoustic and combined bioimaging. Future research directions and perspectives in this rapidly developing field are also discussed.

摘要

有机-无机纳米杂化材料是一类重要的功能材料,它们被广泛应用于光电、催化、生物医学等领域。本文着重总结了几类有机-无机纳米杂化材料的制备以及它们在荧光、光声和拉曼生物成像领域的最新研究进展。本文也对这个热门领域将来的研究发展方向进行了讨论。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49:4878–4897

    Article  Google Scholar 

  2. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  Google Scholar 

  3. Mu Q, Jiang G, Chen L et al (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–7781

    Article  Google Scholar 

  4. Nguyen KT, Zhao Y (2014) Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nannoscale 6:6245–6266

    Article  Google Scholar 

  5. Liang R, Wei M, Evans DG et al (2014) Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun 50:14071–14081

    Article  Google Scholar 

  6. Naoi K, Naoi W, Aoyagi S et al (2013) New generation nanohybrid supercapacitor. Acc Chem Res 46:1075–1083

    Article  Google Scholar 

  7. Suetens P (2009) Fundamentals of medical imaging, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  8. Lee DE, Koo H, Sun IC et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Article  Google Scholar 

  9. Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthc Mater 1:413–431

    Article  Google Scholar 

  10. Taylor A, Wilson KM, Murray P et al (2012) Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem Soc Rev 41:2707–2717

    Article  Google Scholar 

  11. Weissleder R, Pittet MJ (2008) Imaging era of molecular oncology. Nature 452:580–589

    Article  Google Scholar 

  12. Lichtman JW, Conchello J (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  Google Scholar 

  13. Shen L (2011) Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater 2:355–372

    Article  Google Scholar 

  14. Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  Google Scholar 

  15. Ow H, Larson DR, Srivastava M et al (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5:113–117

    Article  Google Scholar 

  16. Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125:11474–11475

    Article  Google Scholar 

  17. Jain TK, Roy I, De TK et al (1998) Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J Am Chem Soc 120:11092–11095

    Article  Google Scholar 

  18. Cordek J, Wang X, Tan W (1999) Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamate detection. Anal Chem 71:1529–1533

    Article  Google Scholar 

  19. Fang XH, Liu X, Schuster S et al (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922

    Article  Google Scholar 

  20. Kumar R, Roy I, Ohulchanskyy TY et al (2008) Covalently dye-linked, surface controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2:449–458

    Article  Google Scholar 

  21. Zhong Y, Peng F, Wei X et al (2012) Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophobic ligands. Angew Chem Int Ed 51:8485–9489

    Article  Google Scholar 

  22. Schick I, Lorentz S, Gehrig D et al (2014) Multifunctional two-photon active silica coated Au@MnO Janus particles for selective dual functionalization and imaging. J Am Chem Soc 136:2473–2483

    Article  Google Scholar 

  23. Sharma P, Bengtsson NE, Walter GA et al (2012) Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging. Small 8:2856–2868

    Article  Google Scholar 

  24. Popat A, Hartono SB, Stahr F et al (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilization, and drug delivery carriers. Nanoscale 3:2801–2818

    Article  Google Scholar 

  25. Manzano M, Vallet-Regi M (2010) New developments in ordered mesoporous materials for drug delivery. J Mater Chem 20:5593–5604

    Article  Google Scholar 

  26. Ambrogio MW, Thomas CR, Zhao YL et al (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44:903–913

    Article  Google Scholar 

  27. Wu S, Zhu C (1999) All-solid-state UV dye laser pumped by XeCl laser. Opt Mater 12:99–103

    Article  Google Scholar 

  28. Fiorilli S, Onida B, Macquarrie D et al (2004) Mesoporous SBA-15 silica impregnated with Reichardt’s dye: a material optically responding to NH3. Sens Actuators B Chem 100:103–106

    Article  Google Scholar 

  29. Lin YS, Tsai CP, Huang HY et al (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573

    Article  Google Scholar 

  30. Gianotti E, Bertolino CA, Benzi C et al (2009) Photoactive hybrid nanomaterials: indocyanine immobilized in mesoporous MCM-41 for “in cell” bioimaging. ACS Appl Mater Interfaces 1:678–687

    Article  Google Scholar 

  31. Ma X, Sreejith S, Zhao Y (2013) Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. ACS Appl Mater Interfaces 5:12860–12868

    Article  Google Scholar 

  32. Prabhakar N, Näreoja T, von Haartman E et al (2013) Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5:3713–3722

    Article  Google Scholar 

  33. Sreejith S, Ma X, Zhao Y (2012) Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J Am Chem Soc 134:17346–17349

    Article  Google Scholar 

  34. Sreejith S, Carol P, Chithra P et al (2008) Squaraine dyes: a mine of molecular materials. J Mater Chem 18:264–274

    Article  Google Scholar 

  35. Sreejith S, Divya KP, Ajayaghosh A (2008) A near-infrared dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma. Angew Chem Int Ed 47:7883–7887

    Article  Google Scholar 

  36. Dresselhaus MS, Jorio A, Hofmann M et al (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758

    Article  Google Scholar 

  37. Roy D, Chhowalla M, Sano N et al (2003) Characterisation of carbon nano-onions using Raman spectroscopy. Chem Phys Lett 373:52–56

    Article  Google Scholar 

  38. Eklund PC, Holden JM, Jishi RA (1995) Vibrational modes of carbon nanotubes: spectroscopy and theory. Carbon 33:959–972

    Article  Google Scholar 

  39. Heller DA, Baik S, Eurell TE et al (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793–2799

    Article  Google Scholar 

  40. Liu Z, Winters M, Holodniy M et al (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 46:2023–2027

    Article  Google Scholar 

  41. Liu Z, Li X, Tabakman SC et al (2008) Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 130:13540–13541

    Article  Google Scholar 

  42. Fan W, Lee YH, Peddireddy S et al (2014) Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 6:4843–4851

    Article  Google Scholar 

  43. Ma X, Qu Q, Zhao Y et al (2013) Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J Mater Chem B 1:6495–6500

    Article  Google Scholar 

  44. Qian X, Zhou X, Nie S (2008) Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc 130:14934–14935

    Article  Google Scholar 

  45. Narayanan TN, Gupta BK, Vithayathil SA et al (2012) Hybrid 2D nanomaterials as dual-mode contrast agents in cellular imaging. Adv Mater 24:2992–2998

    Article  Google Scholar 

  46. Zhang H, Ma X, Nguyen KT et al (2014) Water-soluble pillararene-functionalized graphene oxide for in vitro Raman and fluorescence dual-mode imaging. ChemPlusChem 79:462–469

    Article  Google Scholar 

  47. Yang X, Stein EW, Ashkenazi S et al (2009) Nanoparticles for photoacoustic imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:360–368

    Article  Google Scholar 

  48. Zhou T, Wu B, Xing D (2012) Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 22:470–477

    Article  Google Scholar 

  49. Mallidi S, Larson T, Tam J et al (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831

    Article  Google Scholar 

  50. Zhang Q, Iwakuma N, Sharma P et al (2009) Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20:395102

    Article  Google Scholar 

  51. Sharma P, Brown SC, Bengtsson N et al (2008) Gold-speckled multimodal nanoparticles for noninvasive bioimaging. Chem Mater 20:6087–6094

    Article  Google Scholar 

  52. Bouchard LS, Anwar MS, Liu GL et al (2009) Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA 106:4085–4089

    Article  Google Scholar 

  53. Sreejith S, Joseph J, Nguyen KT et al (2015) Graphene oxide wrapping of gold-silica core-shell nanohybrids for photoacoustic signal generation and bimodal imaging. ChemNanoMat. doi:10.1002/cnma.201400017

    Google Scholar 

  54. Li PC, Wang CRC, Shieh DB et al (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16:18605–18615

    Article  Google Scholar 

  55. Pan D, Pramanik M, Senpan A et al (2010) A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging. J Nanosci Nanotechnol 10:8118–8123

    Article  Google Scholar 

  56. Kim C, Song HM, Cai X et al (2011) In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J Mater Chem 21:2841–2844

    Article  Google Scholar 

  57. Cai X, Li W, Kim CH et al (2011) In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano 5:9658–9667

    Article  Google Scholar 

  58. Song KH, Kim C, Cobley CM et al (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9:183–188

    Article  Google Scholar 

  59. Kim C, Cho EC, Chen J et al (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4:4559–4564

    Article  Google Scholar 

  60. Lu W, Huang Q, Ku G et al (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31:2617–2626

    Article  Google Scholar 

  61. Chen YS, Frey W, Kim S et al (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354

    Article  Google Scholar 

  62. Chen YS, Frey W, Kim S et al (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18:8867–8877

    Article  Google Scholar 

  63. Chen LC, Wei CW, Souris JS et al (2010) Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J Biomed Opt 15:016010

    Article  Google Scholar 

  64. Jokerst JV, Thangaraj M, Kempen PJ et al (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930

    Article  Google Scholar 

  65. Kalele S, Gosavi SW, Urban J et al (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91:1038–1052

    Google Scholar 

  66. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  Google Scholar 

  67. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  Google Scholar 

  68. de La Zerda A, Zavaleta C, Keren S et al (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557–562

    Article  Google Scholar 

  69. Kim JW, Galanzha EI, Shashkov EV et al (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4:688–694

    Article  Google Scholar 

  70. de la Zerda A, Liu Z, Bodapati S et al (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10:2168–2172

    Article  Google Scholar 

  71. Maji SK, Sreejith S, Joseph J et al (2014) Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv Mater 26:5633–5638

    Article  Google Scholar 

  72. Dowling MB, Li L, Park J et al (2010) Multiphoton-absorption-induced-luminescence (MAIL) imaging of tumor-targeted gold nanoparticles. Bioconjugate Chem 21:1968–1977

    Article  Google Scholar 

  73. Voliani V, Ricci F, Signore G et al (2011) Multiphoton molecular photorelease in click-chemistry-functionalized gold nanoparticles. Small 7:3271–3275

    Article  Google Scholar 

  74. Cao L, Wang X, Meziani MJ et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  Google Scholar 

  75. Li JL, Bao HC, How XL et al (2012) Graphene oxide nanoparticles as a nonleaching optical probe for two-photon luminescence imaging and cell therapy. Angew Chem Int Ed 51:1830–1834

    Article  Google Scholar 

  76. Qian J, Wang D, Cai FH et al (2012) Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew Chem Int Ed 51:10570–10575

    Article  Google Scholar 

  77. Nguyen KT, Sreejith S, Joseph J et al (2014) Poly(acrylic acid) capped and dye loaded graphene oxide-mesoporous silica: a nano-sandwich for two-photon and photoacoustic dual mode imaging. Part Part Syst Charact 31:1060–1061

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore, under its NRF Fellowship (NRF2009NRF-RF001-015) and Campus for Research Excellence and Technological Enterprise (CREATE) Programme—Singapore Peking University Research Centre for a Sustainable Low-Carbon Future, the NTU-A*STAR Silicon Technologies Centre of Excellence under the program Grant No. 11235150003 and the NTU-Northwestern Institute for Nanomedicine.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zhao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreejith, S., Huong, T.T.M., Borah, P. et al. Organic–inorganic nanohybrids for fluorescence, photoacoustic and Raman bioimaging. Sci. Bull. 60, 665–678 (2015). https://doi.org/10.1007/s11434-015-0765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0765-4

Keywords

关键词

Navigation