Skip to main content
Log in

Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo

碳纳米材料、金属纳米材料和量子点的生物蓄积和体内毒理学特性与纳米表面化学和剂量的关系

  • Review
  • Chemistry
  • Published:
Science Bulletin

Abstract

The chemical and biological mechanisms of life processes mostly consist of multistep and programmed processes at nanoscale levels. Interestingly enough, cell, the basic functional unit and platform that maintains life processes, is composed of various organelles fulfilling sophisticated functions through the precise control on the biomolecules (e.g., proteins, phospholipid, nucleic acid and ions) in a spatial dimension of nanoscale sizes. Thus, understanding of the activities of manufactured nanoscale materials including their interaction with biological systems is of great significance in chemistry, materials science, life science, medicine, environmental science and toxicology. In this brief review, we summarized the recent advances in nanotoxicological chemistry through the dissection of pivotal factors (primarily focusing on dose and nanosurface chemistry) in determining nanomaterial-induced biological/toxic responses with particular emphasis on the nanomaterial bioaccumulation (and interaction organs or target organs) at intact animal level. Due to the volume of manufacture and material application, we deliberately discussed carbon nanotubes, metal/metal oxide nanomaterials and quantum dots, severing as representative material types to illustrate the impact of dose and nanosurface chemistry in these toxicological scenarios. Finally, we have also delineated the grand challenges in this field in a conceptual framework of nanotoxicological chemistry. It is noted that this review is a part of our persistent endeavor of building the systematic knowledge framework for toxicological properties of engineered nanomaterials.

摘要

生命过程是由一系列发生在纳米尺度上的程序化、多级次、多步骤的化学、物理或生物学过程组成。有趣的是,在构成细胞的亚细胞器中或它们之间发生的这些复杂的过程,很多需要对生物分子(如蛋白质、核酸等)进行纳米尺度空间上的精确调控,以维持生命过程的正常进行。因此,理解在纳米尺度下物质与生命体系的相互作用,对生命科学与纳米科学、化学、材料科学、医学、环境健康科学和毒理学等领域的交叉和融合,将提供独特的视点和启迪。本文从纳米化学的角度,系统归纳影响纳米材料在体内的生物蓄积、作用器官(或靶器官)和体内毒性的关键因素,主要集中在纳米表面化学修饰和剂量效应。由于已有的纳米材料很多,我们在此重点分析了纳米碳管、金属相关(金属和金属氧化物)纳米材料以及量子点在生物体内的蓄积规律、作用器官选择性及其体内毒理;它们的剂量效应;以及纳米表面化学修饰对其体内蓄积规律、作用器官选择性及其体内毒理的调控作用。最后,我们从纳米化学的角度讨论这个领域具有挑战性的科学问题以及建立概念性知识框架尚需要深入研究的方向。这篇综述是我们将纳米毒理学领域的知识系统化的持续努力的一部分。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Y, Zhao Y, Sun B et al (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713

    Google Scholar 

  2. Zhu M, Nie G, Meng H et al (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631

    Google Scholar 

  3. Wang B, He X, Zhang Z et al (2013) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46:761–769

    Google Scholar 

  4. Nel A, Zhao Y, Mädler L (2013) Environmental health and safety considerations for nanotechnology. Acc Chem Res 46:605–606

    Google Scholar 

  5. Monopoli MP, Aberg C, Salvati A et al (2013) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Google Scholar 

  6. Maragò OM, Jones PH, Gucciardi PG et al (2013) Optical trapping and manipulation of nanostructures. Nat Nanotechnol 8:807–819

    Google Scholar 

  7. Nel A, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    Google Scholar 

  8. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Google Scholar 

  9. Li J, Chang X, Chen X et al (2014) Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol Adv 32:727–743

    Google Scholar 

  10. Zhao Y, Nalwa S (2007) Nanotoxicology. American Scientific Publishers, Los Angles

    Google Scholar 

  11. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 267:89–105

    Google Scholar 

  12. Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking and cytotoxicity of nanomaterials. Small 7:1322–1337

    Google Scholar 

  13. Liu Y, Jiao F, Qiu Y et al (2009) The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-a mediated cellular immunity. Biomaterials 30:3934–3945

    Google Scholar 

  14. Qiu Y, Liu Y, Wang L et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    Google Scholar 

  15. Yang P, Sun X, Chiu J et al (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug Chem 16:494–496

    Google Scholar 

  16. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube and fullerene. Environ Sci Technol 39:1378–1383

    Google Scholar 

  17. Wang J, Deng X, Yang S et al (2008) Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 2:28–32

    Google Scholar 

  18. Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024

    Google Scholar 

  19. Yan L, Zhao F, Li S et al (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3:362–382

    Google Scholar 

  20. Yang S, Fernando K, Liu J et al (2008) Covalently PEGylated carbon nanotubes with stealth character in vivo. Small 4:940–944

    Google Scholar 

  21. Deng X, Yang S, Nie H et al (2008) A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology 19:075101

    Google Scholar 

  22. Yang S, Guo W, Lin Y et al (2007) Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C 111:17761–17764

    Google Scholar 

  23. Meng H, Xing G, Sun B et al (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4:2773–2783

    Google Scholar 

  24. Lao F, Chen L, Li W et al (2009) Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 3:3358–3368

    Google Scholar 

  25. Yin J, Lao F, Fu P et al (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30:611–621

    Google Scholar 

  26. Yin J, Lao F, Meng J et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74:1132–1140

    Google Scholar 

  27. Zhang W, Wang C, Li Z et al (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    Google Scholar 

  28. Wang J, Zhou G, Chen C et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Google Scholar 

  29. Wang J, Chen C, Liu Y et al (2008) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80

    Google Scholar 

  30. Wang J, Liu Y, Jiao F et al (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90

    Google Scholar 

  31. Wang B, Feng W, Wang M et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Google Scholar 

  32. Chen Z, Meng H, Xing G et al (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985–8992

    Google Scholar 

  33. Zhu M, Feng W, Wang B et al (2008) Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–111

    Google Scholar 

  34. Zhu M, Feng W, Wang Y et al (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–351

    Google Scholar 

  35. Zhu M, Wang B, Wang Y et al (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203:162–171

    Google Scholar 

  36. Guo S, Huang Y, Jiang Q et al (2010) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4:5505–5511

    Google Scholar 

  37. Wang L, Liu Y, Li W et al (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780

    Google Scholar 

  38. Sun C, Yang H, Yuan Y et al (2011) Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J Am Chem Soc 133:8617–8624

    Google Scholar 

  39. Sung JH, Ji JH, Song KS et al (2011) Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health 27:149–154

    Google Scholar 

  40. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7

    Google Scholar 

  41. Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Google Scholar 

  42. Meng H, Chen Z, Xing G et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110

    Google Scholar 

  43. Chen Z, Meng H, Xing G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Google Scholar 

  44. Meng H, Chen Z, Xing G et al (2007) Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles. J Radioanal Nucl Chem 272:595–598

    Google Scholar 

  45. Chen Z, Meng H, Yuan H et al (2007) Identification of target organs of copper nanoparticles with ICP-MS technique. J Radioanal Nucl Chem 272:599–603

    Google Scholar 

  46. Wang B, Feng W, Wang T et al (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123

    Google Scholar 

  47. Li Y, Zhou Y, Xu D et al (2011) Surface chirality-dependent cytotoxicity of glutathione-stabilized quantum dots and its links to autophagy. Angew Chem Int Ed 50:5860–5864

    Google Scholar 

  48. Chen Z, Chen H, Meng H et al (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol 230:364–371

    Google Scholar 

  49. Ronak S, Oleh T, Olga G et al (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153:16–22

    Google Scholar 

  50. Gao X, Chen J, Chen J et al (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjug Chem 19:2189–2195

    Google Scholar 

  51. Park J, Lee T, Kang J et al (2011) Radioiodination and biodistribution of quantum dots using Bolton-Hunter reagent. Appl Radiat Isot 69:56–62

    Google Scholar 

  52. Su Y, Peng F, Jiang Z et al (2011) In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials 32:5855–5862

    Google Scholar 

  53. Gao J, Chen K, Xie R et al (2010) In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjug Chem 21:604–609

    Google Scholar 

  54. Ducongé F, Pons T, Pestourie C et al (2008) Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjug Chem 19:1921–1926

    Google Scholar 

  55. Al-Jamal WT, Al-Jamal KT, Cakebread A et al (2009) Blood circulation and tissue biodistribution of lipid-quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconjug Chem 20:1696–1702

    Google Scholar 

  56. Cho H, Dong Z, Pauletti G et al (2010) Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 9:5398–5404

    Google Scholar 

  57. Choi H, Ipe B, Misra P et al (2009) Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9:2354–2359

    Google Scholar 

  58. Zhang H, He X, Zhang Z et al (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730

    Google Scholar 

  59. Zhang P, Ma Y, Zhang Z et al (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841

    Google Scholar 

  60. He X, Zhang Z, Zhang H et al (2008) Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol Sci 103:354–361

    Google Scholar 

  61. Li Z, Zhang Z, Jiang W et al (2008) Direct measurement of lanthanum uptake and distribution in internodal cells of Chara. Plant Sci 174:496–501

    Google Scholar 

  62. Zhang Z, He X, Zhang H et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822

    Google Scholar 

  63. Zhang H, He X, Bai W et al (2010) Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics 2:806–810

    Google Scholar 

  64. He X, Feng L, Xiao H et al (2007) Unambiguous effects of lanthanum? Toxicol Lett 170:94–96

    Google Scholar 

  65. Tian G, Yin W, Jin J et al (2014) Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. J Mater Chem B 2:1379–1389

    Google Scholar 

  66. Zheng X, Zhou L, Bu Y et al (2014) Er3+-doped YbPO4 up-conversion porous nanospheres for UCL/CT bimodal imaging in vivo and chemotherapy. J Mater Chem B 2:6508–6516

    Google Scholar 

  67. Gu Z, Yan L, Tian G et al (2013) Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 25:3758–3779

    Google Scholar 

  68. Ren W, Tian G, Zhou L et al (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4:3754–3760

    Google Scholar 

  69. Yin W, Yan L, Yu J et al (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8:6922–6933

    Google Scholar 

  70. Cho W, Duffin R, Thielbeer F et al (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–477

    Google Scholar 

  71. Cho W, Duffin R et al (2010) Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118:1699–1706

    Google Scholar 

  72. Wittmaack K (2007) In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 115:187–194

    Google Scholar 

  73. Li W, Chen C, Ye C et al (2008) The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19:145102

    Google Scholar 

  74. Deng X, Wu F, Liu Z et al (2009) The splenic toxicity of water-soluble multi-walled carbon nanotubes in mice. Carbon 47:1421–1428

    Google Scholar 

  75. Klaassen C (2001) Casarett and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York

    Google Scholar 

  76. Hodges G, Carr E, Hazzard R et al (1995) A commentary on morphological and quantitative aspects of microparticle translocation across the gastrointestinal mucosa. J Drug Target 3:57–60

    Google Scholar 

  77. Kannan R, Rahing V, Cutler C et al (2006) Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. J Am Chem Soc 128:11342–11343

    Google Scholar 

  78. Zhang G, Yang Z, Lu W et al (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936

    Google Scholar 

  79. Morales-Avila E, Ferro-Flores G, Ocampo-García B et al (2011) Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor αvβ3 expression. Bioconjug Chem 22:913–922

    Google Scholar 

  80. Balogh L, Nigavekar S, Nair B et al (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomed Nanotechnol Biol Med 3:281–296

    Google Scholar 

  81. Simpson CA, Agrawal AC, Balinski A et al (2011) Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts. ACS Nano 5:3577–3584

    Google Scholar 

  82. Hirn S, Semmler-Behnke M, Schleh C et al (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–416

    Google Scholar 

  83. Villa CH, McDevitt MR, Escorcia FE et al (2008) Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. Nano Lett 8:4221–4228

    Google Scholar 

  84. Singh R, Pantarotto D, Lacerda L et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362

    Google Scholar 

  85. Gao N, Zhang Q, Mu Q et al (2011) Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFκB activation and reduces its immunotoxicity. ACS Nano 5:4581–4591

    Google Scholar 

  86. Liu Z, Cai W, He L et al (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Google Scholar 

  87. Guo J, Zhang X, Li Q et al (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34:579–583

    Google Scholar 

  88. Wang J, Deng X, Yang S et al (2008) Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 3:1–5

    Google Scholar 

  89. Kang B, Yu DC, Dai YD et al (2009) Biodistribution and accumulation of intravenously administered carbon nanotubes in mice probed by Raman spectroscopy and fluorescent labeling. Carbon 47:1189–1206

    Google Scholar 

  90. Miyawaki J, Matsumura S, Yuge R et al (2009) Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano 3:1399–1406

    Google Scholar 

  91. Wang B, Feng W, Zhu M et al (2009) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res 11:41–53

    Google Scholar 

  92. He X, Zhang H, Ma Y et al (2010) Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 21:285103

    Google Scholar 

  93. Wang X, Xia T, Ntim SA et al (2011) Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5:9772–9787

    Google Scholar 

  94. Yang ST, Wang H, Meziani MJ et al (2009) Biodefunctionalization of functionalized single-walled carbon nanotubes in mice. Biomacromolecules 10:2009–2012

    Google Scholar 

  95. Ge C, Du J, Zhao L et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–16973

    Google Scholar 

  96. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Google Scholar 

  97. Gert S, Sheila O, Toos D et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    Google Scholar 

  98. Moghimi SM, Hedeman H, Muir IS et al (1993) An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta 1157:233–240

    Google Scholar 

  99. Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Google Scholar 

  100. del Pino P, Pelaz B, Zhang Q et al (2014) Protein corona formation around nanoparticles—from the past to the future. Mater Horiz 1:301–313

    Google Scholar 

  101. Walkey CD, Olsen JB, Song F et al (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8:2439–2455

    Google Scholar 

  102. Mutlu G, Budinger G, Green A et al (2010) Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett 10:1664–1670

    Google Scholar 

  103. Wang X, Xia T, Duch M et al (2012) Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 12:3050–3061

    Google Scholar 

  104. Yang S, Liu J, Wang J et al (2010) Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. J Nanosci Nanotechnol 10:8638–8645

    Google Scholar 

  105. Chen R, Huo L, Shi X et al (2014) Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8:2562–2574

    Google Scholar 

  106. Bai W, Zhang Z, Tian W et al (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654

    Google Scholar 

  107. Cui Y, Wang Y, Liu R et al (2011) Serial silver clusters biomineralized by one peptide. ACS Nano 5:8684–8689

    Google Scholar 

  108. Wei Y, Liu R, Sun Z et al (2013) Luminescent silver nanoclusters anchored by oligonucleotides detect human telomerase ribonucleic acid template. Analyst 138:1338–1341

    Google Scholar 

  109. Yang Y, Li X, Jiang J et al (2010) Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping. ACS Nano 4:5755–5762

    Google Scholar 

  110. Bai Y, Zhang Y, Zhang J et al (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–689

    Google Scholar 

  111. Welsher K, Liu Z, Sherlock S et al (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780

    Google Scholar 

  112. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: Are carbon nanotubes safe? Nat Nanotechnol 3:191–192

    Google Scholar 

  113. Tasis D, Tagmatarchis N, Bianco A et al (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Google Scholar 

  114. Schipper M, Nakayama-Ratchford N, Davis C et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3:216–221

    Google Scholar 

  115. Deng X, Jia G, Wang H et al (2007) Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45:1419–1424

    Google Scholar 

  116. Manna S, Sarkar S, Barr J et al (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 5:1676–1684

    Google Scholar 

  117. Mu Q, Du G, Chen T et al (2009) Suppression of human bone morphogenetic protein signaling by carboxylated single-walled carbon nanotubes. ACS Nano 3:1139–1144

    Google Scholar 

  118. Liu H, Zhang Y, Yang N et al (2011) A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis 2:159

    Google Scholar 

  119. Ge C, Lao F, Li W et al (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80:9426–9434

    Google Scholar 

  120. Li R, Wang X, Ji Z et al (2013) Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7:2352–2368

    Google Scholar 

  121. Erathodiyil N, Ying J (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935

    Google Scholar 

  122. Brust M, Walker M, Bethell D et al (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Commun 7:801–802

    Google Scholar 

  123. Brennan J, Hatzakis N, Tshikhudo T et al (2006) Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles. Bioconjug Chem 17:1373–1375

    Google Scholar 

  124. Eck W, Craig G, Sigdel A et al (2008) PEGhylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2:2263–2272

    Google Scholar 

  125. Patel PC, Hao L, Yeung WS et al (2011) Duplex end breathing determines serum stability and intracellular potency of siRNA-Au NPs. Mol Pharm 8:1285–1291

    Google Scholar 

  126. Ma X, Wu Y, Jin S et al (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639

    Google Scholar 

  127. Wang Y, Cui Y, Zhao Y et al (2012) Bifunctional peptides: precisely biomineralize au clusters and specifically stain cell nuclei. Chem Commun 48:871–873

    Google Scholar 

  128. Tian X, Zhu M, Du L et al (2013) Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. Small 9:2432–2439

    Google Scholar 

  129. Chan W, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Google Scholar 

  130. Ryman-Rasmussen J, Riviere J, Monteiro-Riviere N (2006) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Google Scholar 

  131. Derfus A, Chan W, Bhatia S (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Google Scholar 

  132. Meng H, Xia T, George S et al (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–1627

    Google Scholar 

  133. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402

    Google Scholar 

  134. Tian G, Gu Z, Liu X et al (2011) Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. J Phys Chem C 22:966–974

    Google Scholar 

  135. Zhou L, Gu Z, Liu X et al (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22:966–974

    Google Scholar 

  136. Yang D, Zhao Y, Ying G et al (2010) [Gd@C82(OH)22]n Nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4:1178–1186

    Google Scholar 

  137. Xu L, Liu Y, Chen Z et al (2012) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12:2003–2012

    Google Scholar 

  138. Chen C, Li Y, Qu Y et al (2013) Advanced nuclear analytical and related techniques for the growing challenges of nanotoxicology. Chem Soc Rev 42:8266–8303

    Google Scholar 

  139. Wang L, Li J, Pan J et al (2013) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135:17359–17368

    Google Scholar 

  140. Wang M, Feng W, Zhao Y et al (2010) ICP-MS-based strategies for protein quantification. Mass Spectrom Rev 29:326–348

    Google Scholar 

  141. Puzyn T, Rasulev B, Gajewicz A et al (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178

    Google Scholar 

  142. Thomas C, George S, Horst A et al (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5:13–20

    Google Scholar 

  143. Liu Y, Wang H (2007) Nanomedicine: nanotechnology tackles tumour. Nat Nanotechnol 2:20–21

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11305182, 21277037, 21320102003) and the National Basic Research Program of China (2011CB933403).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Zhao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Meng, H., Yan, L. et al. Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci. Bull. 60, 3–20 (2015). https://doi.org/10.1007/s11434-014-0700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0700-0

Keywords

关键词

Navigation