Skip to main content
Log in

The dual role of hydrogen peroxide in fuel cells

  • Review
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

Clean and highly efficient energy production has long been sought after, as a way to solve global energy and environmental problems. Fuel cells, which convert the chemical energy stored in fuel directly into electricity, are expected to be a key enabling technology for the pressing energy issues that plague our planet. Fuel cells require oxygen as an oxidant and require oxygen tank containers when used in air-free environments such as outer space and underwater. Hydrogen peroxide has been extensively utilized as an alternative liquid oxidant in place of gaseous oxygen. In addition to being an oxidant, hydrogen peroxide can donate electrons in the oxidation reaction to act as a fuel. This article provides an overview of the dual role of hydrogen peroxide in fuel-cell applications, including working principle, system design, and cell performance. Recent innovations and future perspectives of fuel cells that use hydrogen peroxide are particularly emphasized.

摘要

发展新的能源技术是解决全球能源与环境问题的关键. 作为新一代能源转换技术, 燃料电池可将燃料中的化学能直接转换为电能, 它是一种高效、清洁的能源转换系统, 必将在未来得到广泛应用. 燃料电池需要氧气作为氧化剂, 为此在诸如太空、水下等无氧环境中, 电池系统需要携带高压氧气储存系统. 因此, 常压下液态过氧化氢已经被广泛地应用在燃料电池中代替气态氧作为氧化剂. 另外, 过氧化氢还可以在燃料电池中通过氧化反应释放电子, 从而可以作为燃料. 本文着重介绍了过氧化氢燃料电池的最新进展, 包括工作原理、系统设计、及电池性能, 并展望了今后的研究方向

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  Google Scholar 

  2. An L, Zhao TS (2011) An alkaline direct ethanol fuel cell with a cation exchange membrane. Energy Environ Sci 4:2213–2217

    Article  Google Scholar 

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  Google Scholar 

  4. An L, Zeng L, Zhao TS (2013) An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane. Int J Hydrog Energy 38:10602–10606

    Article  Google Scholar 

  5. An L, Chai ZH, Zeng L et al (2013) Mathematical modeling of alkaline direct ethanol fuel cells. Int J Hydrog Energy 38:14067–14075

    Article  Google Scholar 

  6. An L, Zhao TS, Wu QX et al (2012) Comparison of different types of membrane in alkaline direct ethanol fuel cells. Int J Hydrog Energy 37:14536–14542

    Article  Google Scholar 

  7. Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sustain Energy Rev 14:183–199

    Article  Google Scholar 

  8. An L, Zhao TS, Li YS et al (2012) Charge carriers in alkaline direct oxidation fuel cells. Energy Environ Sci 5:7536–7538

    Article  Google Scholar 

  9. Miley GH, Luo N, Mather J et al (2007) Direct NaBH4/H2O2 fuel cells. J Power Sources 165:509–516

    Article  Google Scholar 

  10. An L, Zhao TS, Xu JB (2011) A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells. Int J Hydrog Energy 36:13089–13095

    Article  Google Scholar 

  11. Yamada Y, Fukunishi Y, Yamazaki S et al (2010) Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with the fuel cell. Chem Commun 46:7334–7336

    Article  Google Scholar 

  12. Luo N, Miley GH, Kim KJ et al (2008) NaBH4/H2O2 fuel cells for air independent power systems. J Power Sources 185:685–690

    Article  Google Scholar 

  13. Fukuzumi S, Yamada Y, Karlin KD (2012) Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim Acta 82:493–511

    Article  Google Scholar 

  14. An L, Zhao TS, Chai ZH et al (2014) Modeling of the mixed potential in hydrogen peroxide-based fuel cells. Int J Hydrog Energy 39:7407–7416

    Article  Google Scholar 

  15. Gu L, Luo N, Miley GH (2007) Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell. J Power Sources 173:77–85

    Article  Google Scholar 

  16. Raman RK, Choudhury NA, Shukla AK (2004) A high output voltage direct borohydride fuel cell. Electrochem Solid State Lett 7:A488–A491

    Article  Google Scholar 

  17. Jing X, Cao D, Liu Y et al (2011) The open circuit potential of hydrogen peroxide at noble and glassy carbon electrodes in acidic and basic electrolytes. J Electroanal Chem 658:46–51

    Article  Google Scholar 

  18. An L, Zhao TS, Zhou XL (2014) A high-performance ethanol–hydrogen peroxide fuel cell. RSC Adv 4:65031–65034

  19. An L, Zhao TS, Zhou XL et al (2005) A low-cost, high-performance zinc-hydrogen peroxide fuel cell. J Power Sources 275:831

    Article  Google Scholar 

  20. Kim T, Hwang JS, Kwon S (2007) A MEMS methanol reformer heated by decomposition of hydrogen peroxide. Lab Chip 7:835–841

    Article  Google Scholar 

  21. Kim T, Kwon S (2007) Integrated fabrication of a micro methanol reformer and a hydrogen peroxide heat source. In: MEMS 2007, Kobe, Japan, 21–25 January 2007, pp 895–898

  22. Jung ES, Kim T, Jin J et al (2009) Autothermal reformer using hydrogen peroxide for micro fuel cells. In: Power MEMS 2009, Washington DC, USA, December 1–4, 2009

  23. Choudhury N, Kothandaraman R, Shukla A (2004) Direct borohydride fuel cells with hydrogen peroxide oxidant. U.S. Patent Application 10/843,455. 2004-5-12

  24. Raman RK, Shukla AK (2005) Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells. J Appl Electrochem 35:1157–1161

    Article  Google Scholar 

  25. Raman RK, Prashant SK, Shukla AK (2006) A 28-W portable direct borohydride–hydrogen peroxide fuel-cell stack. J Power Sources 162:1073–1076

    Article  Google Scholar 

  26. Raman RK, Shukla AK (2007) A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover. Fuel Cells 7:225–231

    Article  Google Scholar 

  27. de Leon CP, Walsh FC, Rose A et al (2007) A direct borohydride–Acid peroxide fuel cell. J Power Sources 164:441–448

    Article  Google Scholar 

  28. Santos DM, Condeco JA, Franco MW et al (2007) An improved borohydride-H2O2 laboratory fuel cell. ECS Trans 3:19–30

    Article  Google Scholar 

  29. Selvarani G, Prashant SK, Sahu AK et al (2008) A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst. J Power Sources 178:86–91

    Article  Google Scholar 

  30. Ponce de León C, Walsh FC, Patrissi CJ et al (2008) A direct borohydride–peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode. Electrochem Commun 10:1610–1613

    Article  Google Scholar 

  31. Khadke PS, Sethuraman P, Kandasamy P et al (2009) A self-supported direct borohydride–hydrogen peroxide fuel cell system. Energies 2:190–201

    Article  Google Scholar 

  32. Wei J, Wang X, Wang Y et al (2009) Carbon-supported Au hollow nanospheres as anode catalysts for direct borohydride–hydrogen peroxide fuel cells. Energy Fuel 23:4037–4041

    Article  Google Scholar 

  33. Miley GH, Bernas R, Kim KJ et al (2009) Optimization of catalyst deposited diffusion layer for a direct sodium borohydride fuel cell (DNBFC). ECS Trans 17:525–542

    Article  Google Scholar 

  34. Towne S, Carell M, Mustain WE et al (2009) Performance of a direct borohydride fuel cell. ECS Trans 25:1951–1957

    Article  Google Scholar 

  35. Choudhury NA, Prashant SK, Pitchumani S et al (2009) Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells. J Chem Sci 121:647–654

    Article  Google Scholar 

  36. Wang Y, He P, Zhou H (2010) A novel direct borohydride fuel cell using an acid–alkaline hybrid electrolyte. Energy Environ Sci 3:1515–1518

    Article  Google Scholar 

  37. Ma J, Sahai Y, Buchheit RG (2010) Direct borohydride fuel cell using Ni-based composite anodes. J Power Sources 195:4709–4713

    Article  Google Scholar 

  38. Pei F, Wang Y, Wang X et al (2010) Performance of supported Au–Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int J Hydrog Energy 35:8136–8142

    Article  Google Scholar 

  39. Santos DMF, Sequeira CAC (2010) Zinc anode for direct borohydride fuel cells. J Electrochem Soc 157:B13–B19

    Article  Google Scholar 

  40. Yi L, Song Y, Yi W et al (2011) Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. Int J Hydrog Energy 36:11512–11518

    Article  Google Scholar 

  41. Choudhury NA, Sahai Y, Buchheit RG (2011) Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells. Electrochem Commun 13:1–4

    Article  Google Scholar 

  42. Aytaç A, Gürbüz M, Sanli AE (2011) Electrooxidation of hydrogen peroxide and sodium borohydride on Ni deposited carbon fiber electrode for alkaline fuel cells. Int J Hydrog Energy 36:10013–10021

    Article  Google Scholar 

  43. Yi L, Song Y, Liu X et al (2011) High activity of Au–Cu/C electrocatalyst as anodic catalyst for direct borohydride–hydrogen peroxide fuel cell. Int J Hydrog Energy 36:15775–15782

    Article  Google Scholar 

  44. Choudhury NA, Ma J, Sahai Y et al (2011) High performance polymer chemical hydrogel-based electrode binder materials for direct borohydride fuel cells. J Power Sources 196:5817–5822

    Article  Google Scholar 

  45. He P, Wang Y, Wang X et al (2011) Investigation of carbon supported Au–Ni bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell. J Power Sources 196:1042–1047

    Article  Google Scholar 

  46. Ma J, Choudhury NA, Sahai Y et al (2011) Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode. Fuel Cells 11:603–610

    Article  Google Scholar 

  47. Choudhury NA, Sahai Y, Buchheit RG (2011) Polyvinyl alcohol chemical hydrogel electrode binder for direct borohydride fuel cells. J Electrochem Soc 158:B712–B716

    Article  Google Scholar 

  48. Pei F, Wang Y, Wang X et al (2011) Preparation and performance of highly efficient Au nanoparticles electrocatalyst for the direct borohydride fuel cell. Fuel Cells 11:595–602

    Article  Google Scholar 

  49. Yi L, Hu B, Song Y et al (2011) Studies of electrochemical performance of carbon supported Pt–Cu nanoparticles as anode catalysts for direct borohydride–hydrogen peroxide fuel cell. J Power Sources 196:9924–9930

    Article  Google Scholar 

  50. He P, Wang X, Fu P et al (2011) The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. Int J Hydrog Energy 36:8857–8863

    Article  Google Scholar 

  51. Reeve RW (2012) A sodium borohydride–hydrogen peroxide fuel cell employing a bipolar membrane electrolyte. ECS Trans 42:117–129

    Article  Google Scholar 

  52. Yi L, Song Y, Wang X et al (2012) Carbon supported palladium hollow nanospheres as anode catalysts for direct borohydride–hydrogen peroxide fuel cells. J Power Sources 205:63–70

    Article  Google Scholar 

  53. Yi L, Liu L, Liu X et al (2012) Carbon-supported Pt–Co nanoparticles as anode catalyst for direct borohydride–hydrogen peroxide fuel cell: electrocatalysis and fuel cell performance. Int J Hydrog Energy 37:12650–12658

    Article  Google Scholar 

  54. Ma J, Sahai Y (2012) Cost-effective materials for direct borohydride fuel cells. ECS Trans 42:101–106

    Article  Google Scholar 

  55. Santos DMF, Saturnino PG, Lobo RFM (2012) Direct borohydride/peroxide fuel cells using Prussian Blue cathodes. J Power Sources 208:131–137

    Article  Google Scholar 

  56. Santos DMF, Sequeira CAC (2011) Effect of membrane separators on the performance of direct borohydride fuel cells. J Electrochem Soc 159:B126–B132

    Article  Google Scholar 

  57. Choudhury NA, Ma J, Sahai Y (2012) High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells. J Power Sources 210:358–365

    Article  Google Scholar 

  58. Wang Y, Guo Z, Xia Y (2013) A thin-film direct hydrogen peroxide/borohydride micro fuel cell. Adv Energy Mater 3:713–717

    Article  Google Scholar 

  59. Yi L, Liu L, Wang X et al (2013) Carbon supported Pt–Sn nanoparticles as anode catalyst for direct borohydride–hydrogen peroxide fuel cell: electrocatalysis and fuel cell performance. J Power Sources 224:6–12

    Article  Google Scholar 

  60. Jin W, Liu J, Wang Y et al (2013) Direct NaBH4–H2O2 fuel cell based on nanoporous gold leaves. Int J Hydrog Energy 38:10992–10997

    Article  Google Scholar 

  61. An L, Zhao TS, Zeng L (2013) Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells. Appl Energy 109:67–71

    Article  Google Scholar 

  62. An L, Zhao TS, Chen R et al (2011) A novel direct ethanol fuel cell with high power density. J Power Sources 196:6219–6222

    Article  Google Scholar 

  63. An L, Zhao TS (2011) Performance of an alkaline–acid direct ethanol fuel cell. Int J Hydrog Energy 36:9994–9999

    Article  Google Scholar 

  64. Lao SJ, Qin HY, Ye LQ et al (2010) A development of direct hydrazine/hydrogen peroxide fuel cell. J Power Sources 195:4135–4138

    Article  Google Scholar 

  65. Yan X, Meng F, Xie Y et al (2012) Direct N2H4/H2O2 fuel cells powered by nanoporous gold leaves. Sci Rep 2:941

    Google Scholar 

  66. Déctor A, Esquivel JP, González MJ et al (2013) Formic acid microfluidic fuel cell evaluation in different oxidant conditions. Electrochim Acta 92:31–35

    Article  Google Scholar 

  67. Yang W, Yang S, Sun W et al (2006) Nanostructured palladium–silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells. Electrochim Acta 52:9–14

    Article  Google Scholar 

  68. Shu C, Wang E, Jiang L et al (2012) Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J Power Sources 208:159–164

    Article  Google Scholar 

  69. Medeiros MG, Dow EG (1999) Magnesium-solution phase catholyte seawater electrochemical system. J Power Sources 80:78–82

    Article  Google Scholar 

  70. Medeiros MG, Bessette RR, Deschenes CM et al (2001) Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J Power Sources 96:236–239

    Article  Google Scholar 

  71. Bessette RR, Medeiros MG, Patrissi CJ et al (2001) Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications. J Power Sources 96:240–244

    Article  Google Scholar 

  72. Medeiros MG, Bessette RR, Deschenes CM et al (2004) Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J Power Sources 136:226–231

    Article  Google Scholar 

  73. Choudhury NA, Raman RK, Sampath S et al (2005) An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J Power Sources 143:1–8

    Article  Google Scholar 

  74. Cao D, Gao Y, Wang G et al (2010) A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. Int J Hydrog Energy 35:807–813

    Article  Google Scholar 

  75. Wu HJ, Wang C, Liu ZX et al (2010) Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance. Int J Hydrog Energy 35:2648–2651

    Article  Google Scholar 

  76. An L, Zhao TS, Zeng L et al (2014) Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant. Int J Hydrog Energy 39:2320–2324

    Article  Google Scholar 

  77. Dow EG, Bessette RR, Seeback GL et al (1997) Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell. J Power Sources 65:207–212

    Article  Google Scholar 

  78. Bessette RR, Cichon JM, Dischert DW et al (1999) A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell. J Power Sources 80:248–253

    Article  Google Scholar 

  79. Popovich NA, Govind R (2002) Studies of a granular aluminum anode in an alkaline fuel cell. J Power Sources 112:36–40

    Article  Google Scholar 

  80. Brodrecht DJ, Rusek JJ (2003) Aluminum–hydrogen peroxide fuel-cell studies. Appl Energy 74:113–124

  81. Cardenas-Valencia AM, Dlutowski J, Knighton S et al (2007) Aluminum-anode, silicon-based micro-cells for powering expendable MEMS and lab-on-a-chip devices. Sens Actuators B Chem 122:328–336

    Article  Google Scholar 

  82. Hasvold Ø, Johansen KH, Mollestad O et al (1999) The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle. J Power Sources 80:254–260

    Article  Google Scholar 

  83. Hasvold Ø, Størkersen N (2001) Electrochemical power sources for unmanned underwater vehicles used in deep sea survey operations. J Power Sources 96:252–258

    Article  Google Scholar 

  84. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110:1–10

    Article  Google Scholar 

  85. Adams M, Halliop W (2002) Aluminum energy semi-fuel cell systems for underwater applications: the state of the art and the way ahead. OCEANS’02 MTS/IEEE. IEEE 1:199–202

    Google Scholar 

  86. Hasvold O, Johansen KH (2002) The alkaline aluminium hydrogen peroxide semi-fuel cell for the HUGIN 3000 autonomous underwater vehicle. In: Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles, IEEE, pp 89–94

  87. Hasvold Ø, Størkersen NJ, Forseth S et al (2006) Power sources for autonomous underwater vehicles. J Power Sources 162:935–942

    Article  Google Scholar 

  88. Kim T (2010) Hydrogen production from solid sodium borohydride with hydrogen peroxide decomposition reaction. Int J Hydrog Energy 35:12870–12877

    Article  Google Scholar 

  89. Lennon E, Burke AA, Ocampo M et al (2010) Microscale packed bed reactor for controlled hydrogen peroxide decomposition as a fuel cell oxidant aboard unmanned undersea vehicles. J Power Sources 195:299–306

    Article  Google Scholar 

  90. Hasegawa S, Shimotani K, Kishi K et al (2005) Electricity generation from decomposition of hydrogen peroxide. Electrochem Solid State Lett 8:A119–A121

    Article  Google Scholar 

  91. Shyu JC, Huang CL (2011) Characterization of bubble formation in microfluidic fuel cells employing hydrogen peroxide. J Power Sources 196:3233–3238

    Article  Google Scholar 

  92. Sanli AE (2013) A possible future fuel cell: the peroxide/peroxide fuel cell. Int J Energy Res 37:1488–1497

    Article  Google Scholar 

  93. Yang F, Cheng K, Mo Y et al (2012) Direct peroxide–peroxide fuel cell—Part 1: the anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. J Power Sources 217:562–568

    Article  Google Scholar 

  94. Yang F, Cheng K, Liu X et al (2012) Direct peroxide–peroxide fuel cell—Part 2: effects of conditions on the performance. J Power Sources 217:569–573

    Article  Google Scholar 

  95. Shyu JC, Huang CL, Sheu TS et al (2012) Experimental study of direct hydrogen peroxide microfluidic fuel cells. Micro Nano Lett 7:740–743

    Article  Google Scholar 

  96. Choi YS, Sung W (2005) A planar and membraneless microscale fuel cell using nickel and silver as catalysts. In: Solid-state sensors, actuators and microsystems. Digest of Technical Papers. TRANSDUCERS’05. The 13th international conference on IEEE 2:1852–1855

  97. Sung W, Choi JW (2007) A membraneless microscale fuel cell using non-noble catalysts in alkaline solution. J Power Sources 172:198–208

    Article  Google Scholar 

  98. Chen F, Chang MH, Hsu CW (2007) Analysis of membraneless microfuel cell using decomposition of hydrogen peroxide in a Y-shaped microchannel. Electrochim Acta 52:7270–7277

    Article  Google Scholar 

  99. Peng J, Zhang ZY, Niu HT (2012) A three-dimensional two-phase model for a membraneless fuel cell using decomposition of hydrogen peroxide with Y-shaped microchannel. Fuel Cells 12:1009–1018

    Article  Google Scholar 

  100. Yamazaki S, Siroma Z, Senoh H et al (2008) A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J Power Sources 178:20–25

    Article  Google Scholar 

  101. Yamada Y, Yoshida S, Honda T et al (2011) Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions. Energy Environ Sci 4:2822–2825

    Article  Google Scholar 

  102. Shaegh SAM, Ehteshami SMM, HwaáChan S (2012) A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy Environ Sci 5:8225–8228

    Article  Google Scholar 

  103. Disselkamp RS (2008) Energy storage using aqueous hydrogen peroxide. Energy Fuel 22:2771–2774

    Article  Google Scholar 

  104. Disselkamp RS (2010) Can aqueous hydrogen peroxide be used as a stand-alone energy source? Int J Hydrog Energy 35:1049–1053

    Article  Google Scholar 

Download references

Acknowledgments

This work was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (HKUST9/CRF/11G).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshou Zhao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, L., Zhao, T., Yan, X. et al. The dual role of hydrogen peroxide in fuel cells. Sci. Bull. 60, 55–64 (2015). https://doi.org/10.1007/s11434-014-0694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0694-7

Keywords

Navigation