Skip to main content
Log in

Solving surface plasmon resonances and near field in metallic nanostructures: Green’s matrix method and its applications

  • Review
  • Special Topic Plasmonics
  • Published:
Chinese Science Bulletin

Abstract

With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excited accompanying a strong near field enhancement that decays in a subwavelength scale, which have potential applications in the surface-enhanced Raman scattering, biosensor, optical communication, solar cells, and nonlinear optical frequency mixing. In the present article, we review the Green’s matrix method for solving the surface plasmon resonances and near field in arbitrarily shaped nanostructures and in binary metallic nanostructures. Using this method, we design the plasmonic nanostructures whose resonances are tunable from the visible to near-infrared, study the interplay of plasmon resonances, and propose a new way to control plasmonic resonances in binary metallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Girard C, Dereux A. Near-field optics theories. Rep Prog Phys, 1996, 59: 657–699

    Article  Google Scholar 

  2. Girard C, Joachim C, Gauthier S. The physics of the near-field. Rep Prog Phys, 2000, 63: 893–938

    Article  Google Scholar 

  3. Boardman A D. Electromagnetic Surface Modes. New York: John Wiley and Sons, 1982

    Google Scholar 

  4. Raether H. Surface Plasmons. Berlin: Springer, 1988

    Google Scholar 

  5. Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons. Phys Rep, 2005, 408: 131–314

    Article  Google Scholar 

  6. Rather H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin: Springer, 2004

    Google Scholar 

  7. Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B, 2001, 64: 235402

    Article  Google Scholar 

  8. Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett, 1982, 48: 957–960

    Article  Google Scholar 

  9. Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nat Photonics, 2007, 1: 641–648

    Article  Google Scholar 

  10. Maier S A, Kik P G, Atwater H A. Observation of coupled plasmonpolariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl Phys Lett, 2002, 81: 1714–1716

    Article  Google Scholar 

  11. Mitsui K, Handa Y, Kajikawa K. Optical fiber affinity biosensor based on localized surface plasmon resonance. Appl Phys Lett, 2004, 85: 4231–4233

    Article  Google Scholar 

  12. Wang T J, Lin W S. Electro-optically modulated localized surface plasmon resonance biosensors with gold nanoparticles. Appl Phys Lett, 2006, 89: 173903

    Article  Google Scholar 

  13. Mhlschlegel P, Eisler H J, Martin O J F, et al. Resonant optical antennas. Science, 2005, 308: 1607–1609

    Article  Google Scholar 

  14. Cole J R, Halas N J. Optimized plasmonic nanoparticle distributions for solar spectrum harvesting. Appl Phys Lett, 2006, 89: 153120

    Article  Google Scholar 

  15. Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16: 21793–21800

    Article  Google Scholar 

  16. Wokaun A, Bergman J G, Heritage J P, et al. Surface second-harmonic generation from metal island films and microlithographic structures. Phys Rev B, 1981, 24: 849–856

    Article  Google Scholar 

  17. Kim E M, Elovikov S S, Murzina T V, et al. Surface-enhanced optical third-Harmonic generation in Ag island films. Phys Rev Lett, 2005, 95: 227402

    Article  Google Scholar 

  18. Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett, 2007, 98: 026104

    Article  Google Scholar 

  19. Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109: 13857–13870

    Article  Google Scholar 

  20. Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods. J Am Chem Soc, 2002, 124: 14316–14317

    Article  Google Scholar 

  21. Li J, Gu Y, Zhou F, et al. A designer approach to plasmonic nanostructures: tuning their resonance from visible to near-infrared. J Mod Opt, 2009, 56: 1396–1402

    Article  Google Scholar 

  22. Wiley B J, Chen Y C, McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett, 2007, 7: 1032–1036

    Article  Google Scholar 

  23. Lu Y, Liu G L, Kim J, et al. Nanophotonic crescent Moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett, 2005, 5: 119–124

    Article  Google Scholar 

  24. Tamaru H, Kuwata H, Miyazaki H T, et al. Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett, 2002, 80: 1826–1828

    Article  Google Scholar 

  25. Gunnarsson L, Rindzevicius T, Prikulis J, et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J Phys Chem. B, 2005, 109: 1079–1087

    Article  Google Scholar 

  26. Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B, 2006, 110: 18243–18253

    Article  Google Scholar 

  27. Reinhard B M, Siu M, Agarwal H, et al. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett, 2005, 5: 2246–2252

    Article  Google Scholar 

  28. Jain P K, Huang W Y, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett, 2007, 7: 2080–2088

    Article  Google Scholar 

  29. Jain P K, El-Sayed M A. Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells. Nano Lett, 2007, 7: 2854–2858

    Article  Google Scholar 

  30. Gu Y, Wang Y, Li J, et al. Interplay of plasmon resonances in binary nanostructures. Appl Phys B, 2010, 98: 353–363

    Article  Google Scholar 

  31. Gu Y, Li J, Martin O J F, et al. Controlling plasmonic resonances in binary metallic nanostructures. J Appl Phys, 2010, 107: 114313

    Article  Google Scholar 

  32. Taflove A, Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 2005

    Google Scholar 

  33. Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A, 1994, 11: 1491–1499

    Article  Google Scholar 

  34. Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Berlin: Springer-Verlag, 1995

    Google Scholar 

  35. Martin O J F, Girard C, Dereux A. Generalized field propagator for electromagnetic scattering and light confinement. Phys Rev Lett, 1995, 74: 526529

    Google Scholar 

  36. Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419–422

    Article  Google Scholar 

  37. Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J Phys Chem C, 2007, 111: 3806–3819

    Article  Google Scholar 

  38. Gu Y, Yu K W, Sun H. Local-field distribution in resonant composites: Greens-function formalism. Phys Rev B, 1999, 59: 12847–12852

    Article  Google Scholar 

  39. Gu Y, Chen L L, Zhang H X, et al. Resonance capacity of surface plasmon on subwavelength metallic structures. Europhys Lett, 2008, 83: 27004

    Article  Google Scholar 

  40. Morse P M, Feshbach H. Methods of Theoretical Physics. New York: McGraw-Hill, 1953

    Google Scholar 

  41. Economou E N. Green’s Functions in Quantum Physics. 2nd ed. Berlin: Springer, 1990

    Google Scholar 

  42. Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett, 2007, 98: 026104

    Article  Google Scholar 

  43. Fuchs R. Theory of the optical properties of ionic crystal cubes. Phys Rev B, 1975, 11: 1732–1740

    Article  Google Scholar 

  44. Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonances. Chem Phys Lett, 1998, 288: 243–247

    Article  Google Scholar 

  45. Hartschuh A, Sanchez E J, Xie X S, et al. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett, 2003, 90: 095503

    Article  Google Scholar 

  46. Jackson J B, Westcott S L, Hirsch L R, et al. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett, 2003, 82: 257–259

    Article  Google Scholar 

  47. Wang F, Shen Y R. General properties of local plasmons in metal nanostructures. Phys Rev Lett 2006, 97: 206806

    Article  Google Scholar 

  48. Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379

    Article  Google Scholar 

  49. Sheridan A K, Clark A W, Glidle A, et al. Multiple plasmon resonances from gold nanostructures. Appl Phys Lett, 2007, 90: 143105

    Article  Google Scholar 

  50. Clark A W, Sheridan A K, Glidle A, et al. Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl Phys Lett, 2007, 91: 093109

    Article  Google Scholar 

  51. Gu Y, Gong Q H. Avoiding crossing of dielectric resonances in three-component composites. Phys Rev B, 2003, 67: 014209

    Article  Google Scholar 

  52. Gu Y, Gong Q H. Localized mode transfer and optical response in three-component composites. Phys Rev B, 2004, 69: 035105

    Article  Google Scholar 

  53. Li Z, Gong Q H. The plasmonic coupling of metal nanoparticles and its implication for scanning near-field optical microscope characterization. Chinese Sci Bull, 2009, 54: 3843–3843

    Article  Google Scholar 

  54. Cao Z X, Wu L N. Display technique based on surface plasmon resonant effect. Chinese Sci Bull, 2008, 53: 2257–2264

    Article  Google Scholar 

  55. Yao H M, Li Z, Gong Q H. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod. Sci China Ser G-Phys Mech Astron, 2009, 52: 1129–1138

    Article  Google Scholar 

  56. Zhao H W, Huang X G, Huang J T. Surface plasmon polaritons based optical directional coupler. Sci China Ser G-Phys Mech Astron, 2008, 51: 1877–1882

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiHuang Gong.

About this article

Cite this article

Gu, Y., Li, J., Martin, O.J.F. et al. Solving surface plasmon resonances and near field in metallic nanostructures: Green’s matrix method and its applications. Chin. Sci. Bull. 55, 2608–2617 (2010). https://doi.org/10.1007/s11434-010-4023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4023-5

Keywords

Navigation