Skip to main content
Log in

Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau

  • Articles/Geophysics
  • Published:
Chinese Science Bulletin

Abstract

From Global Position System (GPS) measurements, there is a clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. This phenomenon is difficult to be interpreted by simple two-dimensional modeling from a geodynamic point of view. Because of the extremely thick crust and the lower crust with relatively high temperature in the Tibetan Plateau, the lithospheric rheology in Tibet and surrounding areas present a complex structure. In general, the tectonic structure of the Tibetan Plateau consists of brittle upper crust, ductile lower crust, high viscosity lithospheric upper mantle, and low viscosity asthenosphere, the same as the case in many other continental regions. However, the lower crust in the Tibetan Plateau is much more ductile with a lower viscosity than those of its surroundings at the same depth, and the effective viscosity is low along the collision fault zone. In this study, we construct a three-dimensional Maxwell visco-elastic model in spherical coordinate system, and simulate the deformation process of the Tibetan Plateau driven by a continuous push from the Indian plate. The results show that the existence of the soft lower crust under the plateau makes the entire plateau uplift as a whole, and the Himalayas and the eastern Himalayan syntax uplift faster. Since the lower crust of surrounding blocks is harder except in the southeastern corner where the high-temperature material is much softer and forms an exit channel for material transfer, after the whole plateau reaches a certain height, the lower crustal and upper mantle material begins to move eastward or southeastward and drag the upper crust to behave same way. Thus, from the macroscopic point of view, a relative rigid motion of the plateau with a clockwise rotation around the eastern Himalayan syntax is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tapponnier P, Peltzer G, Dain A Y L, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 1982, 10(12): 611–615

    Article  Google Scholar 

  2. England P, Houseman G. Finite strain calculations of continental deformation 2. Comparison with the India-Asia collision zone. J Geophys Res, 1986, 91(3): 3664–3676

    Article  Google Scholar 

  3. Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32(9): 809–812

    Article  Google Scholar 

  4. Zhong D L, Ding L. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism. Sci China Ser D-Earth Sci, 1996, 39(4): 369–379

    Google Scholar 

  5. Shen Z K, Lv J N, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 2005, 110(11): B11409, doi: 10.1029/2004JB003421

    Article  Google Scholar 

  6. Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001, 294(10): 574–577

    Article  Google Scholar 

  7. Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276(2): 788–790

    Article  Google Scholar 

  8. Shen F, Royden L H, Burchfiel B C. Large-scale crustal deformation of the Tibetan Plateau. J Geophys Res, 2001, 106(4): 6793–6816

    Article  Google Scholar 

  9. Wang H, Zhang G, Shi Y, et al. Numerical simulation of movement and deformation of Qinghai-Tibet Plateau (in Chinese). J Geod Geodyn, 2006, 26(2): 15–23

    Google Scholar 

  10. Zhu S B, Shi Y L. Genetic algorithm-finite element inversion of drag forces produced by the lower crust flow to the upper crust in Sichuan-Yunnan area. Chin J Geophys, 2004, 47(2): 258–267

    Google Scholar 

  11. Liu M, Yang Y. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling. J Geophys Res, 2003, 108(8): 2361, doi: 10.1029/2002JB002248

    Article  Google Scholar 

  12. Fu R S, Li L G, Huang J H, et al. Three-step model of the Qinghai-Xizang Plateau uplift (in Chinese). Chin J Geophys, 1999, 42(5): 609–616

    Google Scholar 

  13. Fu R S, Huang J H, Li L G, et al. Numerical simulation of the three step uplift model of the Tibetan Plateau (in Chinese). Earth Sci Front, 2000, 7(4): 588–596

    Google Scholar 

  14. Fu R S, Huang J H, Xu Y M, et al. Numerical simulation of the collision between Indian and Eurasian plates and the deformations of present Chinese continent (in Chinese). Acta Seismol Sin, 2000, 13(1): 1–7

    Article  Google Scholar 

  15. Fu R S, Xu Y M, Huang J H, et al. Numerical simulation of the Qinghai-Xizang Plateau uplift under the effect of denudation and mantle convection (in Chinese). Chin J Geophys, 2000, 43(3): 346–355

    Google Scholar 

  16. Li Z N, Fu R S, Huang J H. Numerical simulation of the uplift process of the Qinghai-Xizang Plateau under the effect of denudation and mantle convection. Chin J Geophys, 2002, 45(4): 537–545

    Google Scholar 

  17. Zheng Y, Fu R S, Huang J H. Simulation of lithospheric evolution of the China mainland and its surrounding regions. Chin J Geophys, 2006, 49(2): 356–371

    Google Scholar 

  18. Zheng Y, Chen Y, Fu R S, et al. Simulation of the effect of faults movement on stress and deformation fields of Tibetan Plateau by discontinuous movement models. Chin J Geophys, 2007, 20(5): 1199–1212

    Google Scholar 

  19. Wang J, Ye Z R, He J K. Three-dimensional mechanical modeling of large-scale crustal deformation in China constrained by the GPS velocity field. Tectonophysics, 2008, 446: 51–60

    Article  Google Scholar 

  20. Ding L, Zhong D L. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Sci China Ser D-Earth Sci, 1999, 42(5): 491–505

    Article  Google Scholar 

  21. An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411(6833): 62–66

    Article  Google Scholar 

  22. Wu Y Q, Cui Z J, Liu G N, et al. Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai-Xizang (Tibet) Plateau. Geomorphology, 2001, 36(3–4): 203–216

    Article  Google Scholar 

  23. Zhang J J, Ji J Q, Zhong D L, et al. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Sci China Ser D-Earth Sci, 2004, 47(2): 138–150

    Article  Google Scholar 

  24. Pan B T, Gao H S, Li B Y, et al. Step-like landforms and uplift of the Qinghai-Xizang Plateau (in Chinese). Quat Sci, 2004, 24(1): 50–58

    Google Scholar 

  25. Zhang Q S, Zhou Y F, Lu X S, et al. On the present uplift speed of Qing-Zang Plateau. Chin Sci Bull, 1991, 36(21): 1820–1824

    Google Scholar 

  26. Kearey P, Vine F J. Global Tectonics. Oxford: Blackwell Publishing Limited, 1996. 30–33

    Google Scholar 

  27. Braitenberg C, Wang Y, Fang J, et al. Spatial variations of Flexure Parameters over the Qinghai-Tibet Plateau. Earth Planet Sci Lett, 2003, 205(3–4): 211–224

    Article  Google Scholar 

  28. Wang Y. Heat flow pattern and lateral variations of lithoshpere strength in China mainland: Constraints on acitve deformation. Phys Earth Planet In, 2001, 126: 121–146

    Article  Google Scholar 

  29. Shi Y L, Zhu S B. Contrast of rheology of crust and mantle near Moho revealed by depth variation of earthquake mechanism in continental China. Chin J Geophys, 2003, 46(3): 516–525

    Google Scholar 

  30. Shi Y L, Zhu Y Q. Some thermotectonic aspects of the Tibetan Plateau. Tectonophysics, 1993, 219: 223–233

    Article  Google Scholar 

  31. Hilley G E, Bürgmann R, Zhang P Z, et al. Bayesian inference of plastosphere viscosities near the Kunlun Fault, northern Tibet. Geophys Res Lett, 2005, 32: L01302, doi: 10.1029/2004GL021658

    Article  Google Scholar 

  32. Hu S, He L, Wang J. Heat flow in the continental area of China: A new data set. Earth Planet Sci Lett, 2000, 179(2): 407–419

    Article  Google Scholar 

  33. Hu S B, He L J, Wang J Y. Compilation of heat flow data in the China continental area (3rd edition) (in Chinese). Chin J Geophy, 2001, 44(5): 611–626

    Google Scholar 

  34. Zhao W L, Morgan W J. Injection of Indian crust into Tibetan lower crust: A two dimensional finite element model study. Tectonics, 1987, 6(4): 489–504

    Article  Google Scholar 

  35. Royden L. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J Geophys Res, 1996, 101(8): 17679–17705

    Article  Google Scholar 

  36. Flesch L M, Haines A J, Holt W E. Dynamics of the India-Eurasia collision zone. J Geophys Res, 2001, 106(8): 16435–16460

    Article  Google Scholar 

  37. Gao S, Luo T C, Zhang B R, et al. Structure and composition of the continental crust in East China. Sci China Ser D-Earth Sci, 1999, 42(2): 129–140

    Article  Google Scholar 

  38. An M J, Shi Y L. Three-dimensional thermal structure of the Chinese continental crust and upper mantle. Sci China Ser D-Earth Sci, 2007, 50(10): 1441–1451

    Article  Google Scholar 

  39. Shi Y L, Cao J L. Lithosphere effective viscosity of continental China. Earth Sci Front, 2008, 15(3): 82–95

    Article  Google Scholar 

  40. Zhang Z J, Teng J W, Li Y K, et al. Crustal structure of seismic velocity in southern Tibet and east-westward escape of the crustal material-An example by wide-angle seismic profile from Peigu Tso to Pumoyong Tso. Sci China Ser D-Earth Sci, 2004, 47(6): 500–506

    Article  Google Scholar 

  41. Zhu S B, Shi Y L. Origin of tectonic stresses in the Chinese continent and adjacent areas. Sci China Ser D-Earth Sci, 2006, 50(1): 67–74

    Article  Google Scholar 

  42. Wang H, Cao J L, Zhang H, et al. Numerical simulation of the influence of lower-crustal flow on the deformation of the Sichuan-Yunnan region. Acta Seismol Sin, 2007, 20: 617–627

    Article  Google Scholar 

  43. An M J, Shi Y L. Lithospheric thickness of the Chinese continent. Phys Earth Planet Int, 2006, 159(3–4): 257–266

    Article  Google Scholar 

  44. Tong W, Mu Z G, Liu S B. The Late-Cenozoic volcanoes and active high-temperature hydrothermal systems in China (in Chinese). Chin J Geophys, 1990, 33(3): 329–335

    Google Scholar 

  45. Jiang C S. Distribution characteristics of Tengchong volcano in the Cenozoic era (in Chinese). J Seismol Res, 1998, 21(4): 309–319

    Google Scholar 

  46. Deng W M. Cenozoic volcanic activity and its geotectonic background in west China—Formative excitation mechanism of volcanic rocks in Qinghai-Xizang and adjacent districts (in Chinese). Earth Sci Front, 2003, 10(2): 471–478

    Google Scholar 

  47. Flesch L M, Holt W E, Silver P G, et al. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet Sci Lett, 2005, 238: 248–268

    Article  Google Scholar 

  48. Hirn A, Jiang M, Sapin M, et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 1995, 375(6532): 571–574

    Article  Google Scholar 

  49. Sandvol E, Ni J, Kind R, et al. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. J Geophys Res, 1997, 102(B8): 17813–17824

    Article  Google Scholar 

  50. Lev E, Long M D, Hilst R D. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet Sci Lett, 2006, 251: 293–304

    Article  Google Scholar 

  51. Huang W C, Ni J F, Tilmann F, et al. Seismic polarization anisotropy beneath the central Tibetan Plateau. J Geophys Res, 2000, 105(B12): 27979–27990

    Article  Google Scholar 

  52. McNamara D E, Owens T J, Silver P G, et al. Shear wave anisotropy beneath the Tibetan Plateau. J Geophys Res, 1994, 99(B7): 13655–13666

    Article  Google Scholar 

  53. Cui X F, Xie F R, Zhang H Y. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest (in Chinese). Acta Seismol Sin, 2006, 28(5): 451–461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianLing Cao.

Additional information

Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-123) and National Natural Science Foundation of China (Grant Nos. 40774048 and 90814014)

About this article

Cite this article

Cao, J., Shi, Y., Zhang, H. et al. Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. Chin. Sci. Bull. 54, 1398–1410 (2009). https://doi.org/10.1007/s11434-008-0588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0588-7

Keywords

Navigation