Skip to main content
Log in

Making continental crust: The sanukitoid connection

  • Review
  • Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

The average continental crust possesses intermediate compositions that typify arc magmatism and as a result it is believed to have been created at ancient convergent plate boundaries. One possible mechanism for intermediate continental crust formation is the direct production of andesitic melts in the upper mantle. Sanukitoids, which characterize the Setouchi volcanic belt, SW Japan, include unusually high-Mg andesites (HMA). They were generated by slab melting and subsequent melt-mantle interactions under unusual tectonic settings such as where warm lithosphere subducts into hot upper mantle. Such conditions would have existed in the Archean. Hydrous HMA magmas are likely to have solidified within the crust to form HMA plutons, which were then remelted to produce differentiated sanukitoids. At present, generation and differentiation of HMA magmas may be taking place in the Izu-Bonin-Mariana arc-trench system (IBM), because (1) HMA magmatism characterizes the initial stages of the IBM evolution and (2) the IBM middle crust exhibits V p identical to that of the bulk continental crust. V p estimates for plutonic rocks with HMA compositions support this. However tonalitic composition for middle-crust-forming rocks cannot be ruled out, suggesting an alternative possibility that the continental crust has been created by differentiation of mantle-derived basaltic magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen N I, Mooney W D. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 1995, 100: 9761–9788

    Article  CAS  Google Scholar 

  2. Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 1995, 33: 267–309

    Article  Google Scholar 

  3. Taylor S R, McLennan S M. The geochemical evolution of the continental crust. Rev Geophys, 1995, 33: 241–265

    Article  Google Scholar 

  4. Nicholls I A, Ringwood A E. Effect of water on olivine stability in tholeiites and the production of silica saturated magmas in the island arc environment. J Geol, 1973, 81: 285–300

    Google Scholar 

  5. Sekine T, Wyllie P J. Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 1982, 79: 368–374

    Article  CAS  Google Scholar 

  6. Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 1991, 51: 1–25

    Article  CAS  Google Scholar 

  7. Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib Mineral Petrol, 1994, 115: 369–383

    Article  CAS  Google Scholar 

  8. Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 1986, 14: 753–756

    Article  CAS  Google Scholar 

  9. Drummond M S, Defant M J. A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res B-Solid Earth Planets, 1990, 95: 21503–21521

    Article  Google Scholar 

  10. Kelemen P B. Genesis of high Mg andesites and the continental crust. Contrib Mineral Petrol, 1995, 120: 1–19

    Article  CAS  Google Scholar 

  11. Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425: 605–609

    Article  PubMed  CAS  Google Scholar 

  12. Shirey S B, Hanson G N. Mantle-derived Archaean monzodiorites and trachyandesites. Nature, 1984, 310: 222–224

    Article  CAS  Google Scholar 

  13. Samsonov A V, Bogina M M, Bibikova E V, et al. The relationship between adakitic, calc-alkaline volcanic rocks and TTGs: Implications for the tectonic setting of the Karelian greenstone belts, Baltic Shield. Lithos, 2005, 79: 83–106

    Article  CAS  Google Scholar 

  14. Moyen J F, Martin H, Jayananda M, et al. Late Archaean granites; a typology based on the Dharwar Craton, India. Precambrian Res, 2003, 127: 103–123

    Article  CAS  Google Scholar 

  15. Smithies R H, Champion D C. Late Archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: A result of lower crustal delamination? J Geol Soc London, 1999, 156: 561–576

    Article  CAS  Google Scholar 

  16. Koto B. On the volcanoes of Japan (V). J Geol Soc Tokyo, 1916, 23: 95–127

    Google Scholar 

  17. Weinschenk E. Beiträge zur Petrographie Japans. Neues Jahrb Min Geol Paläont, 1891, 7: 133–151

    Google Scholar 

  18. Tatsumi Y, Ishizaka K. Existence of andesitic primary magma: An example from Southwest Japan. Earth Planet Sci Lett, 1981, 53: 124–130

    Article  CAS  Google Scholar 

  19. Tatsumi Y. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annu Rev Earth Planet Sci, 2006, 34: 467–499

    Article  CAS  Google Scholar 

  20. Uto K, Anno K, Sudo M, et al. K-Ar ages for the Middle Miocene Muro volcanic rock, Southwest Japan. Bull Volcanol Soc Japan, 1996, 41: 257–261

    CAS  Google Scholar 

  21. Sumii T. K-Ar ages of the Miocene Setouchi-volcanic rocks in the western Setouchi Island Sea region, Southwest Japan. J Geol Soc Japan, 2000, 106: 609–619

    CAS  Google Scholar 

  22. Shinjoe H, Sumii T. Catalog of the Middle Miocene igneous rocks in the forearc region of the Southwest Japan: (2) Shikoku district. Memoir of Human and Natural Sciences, Tokyo Keizai Univ, 2001, 112: 51–91

    Google Scholar 

  23. Tatsumi Y, Ishikawa N, Anno K, et al. Tectonic setting of high-Mg andesite magmatism in the SW Japan Arc: K-Ar chronology of the Setouchi volcanic belt. Geophys J Int, 2001, 144: 625–631

    Article  CAS  Google Scholar 

  24. Tatsumi Y, Shukuno H, Sato K, et al. The Petrology and Geochemistry of High-Mg Andesites at the Western Tip of the Setouchi volcanic belt, SW Japan. J Petrol, 2003, 44: 1561–1578

    Article  CAS  Google Scholar 

  25. Sugihara T, Fujimaki H. K-Ar ages for the Setouchi volcanic rocks in Shitara district, central Japan. Jpn Mag Mineral Petrol Sci, 2002, 31: 15–24

    Google Scholar 

  26. Shibata K. Contemporaneity of Tertiary granites in the outer zone of Southwest Japan. B Geol Surv Jpn, 1978, 29: 51–54

    Google Scholar 

  27. Nakanishi I. Precursors to ScS phases and dipping interface in the upper mantle beneath southwestern Japan. Tectonophys, 1980, 69: 1–35

    Article  Google Scholar 

  28. Syracuse E M, Abers G A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst, 2006, 7: Q05017, doi:10.1029/2005GC001045

  29. Tatsumi Y, Eggins S. Subduction Zone Magmatism. Boston: Blackwell Science, 1995

    Google Scholar 

  30. England P, Engdahl R, Thatcher W. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int, 2004, 156: 377–408

    Article  Google Scholar 

  31. Tatsumi Y. Formation of the volcanic front in subduction zones. Geophys Res Lett, 1986, 13: 717–720

    Article  Google Scholar 

  32. Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res, 1989, 94: 4697–4707

    Article  CAS  Google Scholar 

  33. Okino K, Shimakawa Y, Nagaoka S. Evolution of the Shikoku Basin. J Geomag Geoelect, 1994, 46: 463–479

    Google Scholar 

  34. Okino K, Kasuga S, Ohara Y. A new scenario of the Parece Vela Basin genesis. Mar Geophy Res, 1998, 20: 21–40

    Article  Google Scholar 

  35. Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophys Res Lett, 1999, 26: 2287–2290

    Article  Google Scholar 

  36. Furukawa Y, Tatsumi Y. Melting of a subducting slab and production of high-Mg andesite magmas: Unusual magmatism in SW Japan at 13–15 Ma. Geophys Res Lett, 1999, 26: 2271–2274

    Article  Google Scholar 

  37. Tamaki K. Ocean Drilling Program and back-arc basin tectonics: Tyrrhenian Sea, Sulu/Celebes seas, Sumisu Rift, Japan Sea and Lau Basin. International Geological Congress, Abstracts-Congres, 1992. 20

  38. Tamaki K. Opening tectonics of the Japan Sea. In: Taylor B, ed. Backarc Basins: Tectonics and Magmatism. New York: Plenum Press, 1995. 407–420

    Google Scholar 

  39. Otofuji Y-i, Matsuda T, Nohda S. Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan-rifting Process of the Japan Arc. Earth Planet Sci Lett, 1985, 75: 267–277

    Article  Google Scholar 

  40. Tatsumi Y, Otofuji Y-i, Matsuda T, et al. Opening of the Sea of Japan back-arc basin by asthenospheric injection. Tectonophys, 1989, 166: 317–329

    Article  Google Scholar 

  41. Tatsumi Y, Furukawa Y, Yamashita S. Thermal and geochemical evolution of the mantle wedge in the NE Japan arc: I. Contribution from experimental petrology. J Geophys Res, 1994, 99: 22275–22283

    Article  Google Scholar 

  42. Stern R J. When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull, 2007, 52(5): 578–591

    Article  Google Scholar 

  43. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985

    Google Scholar 

  44. McCulloch M T, Bennett V C. Progressive growth of the Earth’s continental crust and depleted mantle: Geochemical constraints. Geochim Cosmochim Acta, 1994, 59: 4717–4738

    Article  Google Scholar 

  45. Roeder P L, Emslie R F. Olivine-liquid equilibrium. Contrib Mineral Petrol, 1970, 29: 275–289

    Article  CAS  Google Scholar 

  46. Kikuchi Y. On pyroxenic components in certain volcanic rocks from Bonin Island. J Coll Sci Imp Univ Japan, 1889, 3: 67–89

    Google Scholar 

  47. Yogodzinski G M, Volynets O N, Koloskov A V, et al. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. J Petrol, 1994, 35: 163–204

    CAS  Google Scholar 

  48. Kay R W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res, 1978, 4: 117–132

    Article  CAS  Google Scholar 

  49. Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 1990, 347: 662–665

    Article  CAS  Google Scholar 

  50. Castillo P R. An overview of adakite petrogenesis. Chin Sci Bull, 2006, 51(3): 257–268

    Article  Google Scholar 

  51. O’Hara M J. Primary magmas and the origin of basalts. Scottish J Geol, 1965, 1: 19–40

    Article  CAS  Google Scholar 

  52. Kushiro I. The system forsterite-diopside-silica with and without water at high pressures. American J Sci, 1969, 267-A: 269–294

    CAS  Google Scholar 

  53. Mysen B O, Boettcher A L. Melting of a hydrous mantle: I, Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol, 1975, 16: 520–548

    CAS  Google Scholar 

  54. Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 1997, 25: 42–44

    Article  CAS  Google Scholar 

  55. Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, Southwest Japan: II, Melting phase relations at high pressures. Earth Planet Sci Lett, 1982, 60: 305–317

    Article  CAS  Google Scholar 

  56. Tatsumi Y. Melting experiments on a high-magnesian andesite. Earth Planet Sci Lett, 1981, 54: 357–365

    Article  CAS  Google Scholar 

  57. Umino S, Kushiro I. Experimental studies on boninite petrogenesis. In: Crawford A J, ed. Boninites. London: Unwin Hyman, 1989. 89–111

    Google Scholar 

  58. Crawford A J, Falloon T J, Green D H. Classification, petrogenesis and tectonic setting of boninites. In: Crawford A J, ed. Boninites and Related Rocks. London: Unwin Hyman, 1989. 1–49

    Google Scholar 

  59. Tatsumi Y, Maruyama S. Boninites and high-Mg andesites: tectonics and petrogenesis. In: Crawford A J, ed. Boninites. London: Unwin Hyman, 1989. 50–71

    Google Scholar 

  60. Tatsumi Y, Hanyu T. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Towards a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst, 2003, 4: 1081, doi: 10.1029/2003GC000530

    Article  CAS  Google Scholar 

  61. Wood D, Joron J L, Marsh N G, et al. Major and trace element variations in basalts from the north Philippine Sea drilled during DSDP Leg 58: A comparative study of back-arc basin basalts with lava series from Japan and mid-ocean ridges. In: Klein G, Kobayashi K, eds. Initial Reports of the Deep Sea Drilling Project: U.S. Government Printhing Office 58, 1979. 873–894

  62. Hickey-Vargas R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. J Geophys Res, 1998, 103: 20963–20980

    Article  CAS  Google Scholar 

  63. Shimoda G, Tatsumi Y, Nohda S, et al. Setouchi high-Mg andesites revisited: Geochemical evidence for melting of subducting sediments. Earth Planet Sci Lett, 1998, 160: 479–492

    Article  CAS  Google Scholar 

  64. Kogiso T, Tatsumi Y, Shimoda G, et al. High-ì(HIMU) ocean island basalts in southern Polynesia: New evidence for whole mantle scale recycling of subducted oceanic crust. J Geophys Res B-Solid Earth Planets, 1997, 102: 8085–8103

    Article  CAS  Google Scholar 

  65. Aizawa Y, Tatsumi Y, Yamada H. Element transport during dehydration of subducting sediments: Implication for arc and ocean island magmatism. Island Arc, 1999, 8: 38–46

    Article  CAS  Google Scholar 

  66. Tatsumi Y. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology, 2001, 29: 323–326

    Article  CAS  Google Scholar 

  67. Tatsumi Y, Kawabata H, Sato K, et al. The Petrology and Geochemistry of Oto-Zan Composite Lava Flow on Shodo-Shima Island, SW Japan: Remelting of a Solidified High-Mg Andesite Magma. J Petrol, 2006, 47: 595–629

    Article  CAS  Google Scholar 

  68. Suyehiro K, Takahashi N, Ariie Y, et al. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science, 1996, 272: 390–392

    Article  CAS  Google Scholar 

  69. Takahashi N, Suyehiro K, Shinohara M. Implications from the seismic crustal structure of the northern Izu-Bonin arc. Island Arc, 1998, 7: 383–394

    Article  Google Scholar 

  70. Takahashi N, Kodaira S, Klemperer L S, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 2007, 35: 203–206

    Article  Google Scholar 

  71. Kodaira S, Sato T, Takahashi N, et al. Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res, 2007, 112, B05104, doi: 10.1029/2006JB004593

    Article  Google Scholar 

  72. Crawford W C, Hildebrand J A, Dorman L M, et al. Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J Geophys Res, 2003, 108: 2195, doi: 10.1029/2001JB001435

    Article  Google Scholar 

  73. Nakanishi A, Kurashimo E, Tatsumi Y, et al. Crustal evolution of the southwestern Kuril Arc deduced from seismic velocity and geochemical structure. Tectonophys, 2008, in press

  74. Sakamoto I, Hirata D, Fujioka K. Description of basement rocks from the Izu-Bonin arc. Res Rep Kanagawa Prefectural Museum, 1999, 9: 21–39

    Google Scholar 

  75. Haraguchi S, Ishii T, Kimura J-I, et al. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol, 2003, 145: 151–168

    CAS  Google Scholar 

  76. Connolly J A D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 2005, 236: 524–541

    Article  CAS  Google Scholar 

  77. Hacker B R, Abers G A, Peacock S M. Subduction factory: 1, Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res, 2003, 108(B1), doi: 10.1029/2001JB001127

  78. Kitamura K, Ishikawa M, Arima M. Petrological model of the northern Izu-Bonin-Mariana arc crust: Constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophys, 2003, 371: 213–221

    Article  Google Scholar 

  79. Tatsumi Y, Shukuno H, Tani K, et al. Structure and growth of the Izu-Bonin-Mariana arc crust: II. The role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res, 2008, 113, doi: 10.1029/2007JB005121

  80. Tatsumi Y. Slab melting: Its role in continental crust formation and mantle evolution. Geophys Res Lett, 2000, 27: 3941–3944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tatsumi.

Additional information

Supported partially by Grant-in-Aid for Creative Scientific Research of Japan (Grant No. 19GS0211)

About this article

Cite this article

Tatsumi, Y. Making continental crust: The sanukitoid connection. Chin. Sci. Bull. 53, 1620–1633 (2008). https://doi.org/10.1007/s11434-008-0185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0185-9

Keywords

Navigation