Skip to main content
Log in

An investigation of ab initio shell-model interactions derived by no-core shell model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo’s first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green’s function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Vary, in Computational Nuclear Physics: Key to Discovery Opportunities: Proceedings of International Conference ‘Nuclear Theory in the Supercomputing Era -2013’ (NTSE-2013), Ames, IA, USA, May 13-17, 2013, edited by A.M. Shirokov and A. I. Mazur (Pacific National University, Khabarovsk, 2014) p. 15.

    Google Scholar 

  2. O. Sorlin, and M. G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).

    Article  ADS  Google Scholar 

  3. E. K. Warburton, J. A. Becker, and B. A. Brown, Phys. Rev. C 41, 1147 (1990).

    Article  ADS  Google Scholar 

  4. T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, and T. Mizusaki, Phys. Rev. Lett. 87, 082502 (2001).

    Article  ADS  Google Scholar 

  5. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaish, Phys. Rev. Lett. 95, 232502 (2005).

    Article  ADS  Google Scholar 

  6. G. L. Yu, J. Z. Gu, Y. Z. Wang, Z. Y. Li, and G. Q. Meng, Sci. China-Phys. Mech. Astron. 57, 1662 (2014).

    Article  ADS  Google Scholar 

  7. G. F. Dai, L. Guo, E. G. Zhao, and S. G. Zhou, Sci. China-Phys. Mech. Astron. 57, 1618 (2014).

    Article  ADS  Google Scholar 

  8. M. H. Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261, 125 (1995).

    Article  ADS  Google Scholar 

  9. S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett. 113, 142501 (2014).

    Article  ADS  Google Scholar 

  10. J. Carlson, and R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998); J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).

    Article  ADS  Google Scholar 

  11. B. R. Barrett, P. Navratil, and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).

    Article  ADS  Google Scholar 

  12. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, Rep. Prog. Phys. 77, 096302 (2014).

    Article  ADS  Google Scholar 

  13. A. F. Lisetskiy, B. R. Barrett, M. K. G. Kruse, P. Navrátil, I. Stetcu, and J. P. Vary, Phys. Rev. C 78 044302 (2008).

    Article  ADS  Google Scholar 

  14. A. F. Lisetskiy, M. K. G. Kruse, B. R. Barrett, P. Navrátil, I. Stetcu, and J. P. Vary, Phys. Rev. C 80, 024315 (2009).

    Article  ADS  Google Scholar 

  15. G. R. Jansen, J. Engel, G. Hagen, P. Navrátil, and A. Signoracci, Phys. Rev. Lett. 113, 142502 (2014).

    Article  ADS  Google Scholar 

  16. X. B. Wang, G. X. Dong, and F. R. Xu, EPJ Web Conf. 66, 02108 (2014).

    Article  Google Scholar 

  17. X. B. Wang, and G. X. Dong, J. Phys. G-Nucl. Part. Phys. 42, 125101 (2015).

    Article  ADS  Google Scholar 

  18. X. B. Wang, and G. X. Dong, Sci. China-Phys. Mech. Astron. 58, 102001 (2015).

    Article  ADS  Google Scholar 

  19. P. Navrátil, M. Thoresen, and B. R. Barrett, Phys. Rev. C 55, R573 (1997).

    Article  ADS  Google Scholar 

  20. E. Dikmen, A. F. Lisetskiy, B. R. Barrett, P. Maris, A.M. Shirokov, and J. P. Vary, Phys. Rev. C 91, 064301 (2015).

    Article  ADS  Google Scholar 

  21. R. K. Bansal, and J. B. French, Phys. Lett. 11, 145 (1964).

    Article  ADS  Google Scholar 

  22. A. Poves, and A. P. Zuker, Phys. Rep. 70, 235 (1981).

    Article  ADS  Google Scholar 

  23. G. X. Dong, S. Y. Yu, Y. X. Liu, C. W. Shen, and Y. S. Dong, Sci. China-Phys. Mech. Astron. 53, 106 (2010).

    Article  ADS  Google Scholar 

  24. G. X. Dong, X. B. Wang, and F. R. Xu, Chin. Sci. Bull. 59, 3847 (2014).

    Article  Google Scholar 

  25. G. X. Dong, X. B. Wang, and S. Y. Yu, Sci. China-Phys. Mech. Astron. 58, 112004 (2015).

    Article  Google Scholar 

  26. J. P. Elliott, A. D. Jackson, H. A. Mavromantis, E. A. Sanderson, and B. Singh, Nucl. Phys. A 121, 241 (1968).

    Article  ADS  Google Scholar 

  27. M. W. Kirson, Phys. Lett. B 47, 110 (1973).

    Article  ADS  Google Scholar 

  28. K. Yoro, Nucl. Phys. A 333, 67 (1980).

    Article  Google Scholar 

  29. K. Yoshinada, Phys. Rev. C 26, 1784 (1982).

    Article  ADS  Google Scholar 

  30. B. A. Brown, W. A. Richter, and B. H. Wildenthal, J. Phys. G-Nucl. Phys. 11, 1191 (1985).

    Article  ADS  Google Scholar 

  31. B. A. Brown, W. A. Richter, R. E. Julies, and B. H. Wildenthal, Ann. Phys. 182, 191 (1988).

    Article  ADS  Google Scholar 

  32. A. Umeya, and K. Muto, Phys. Rev. C 74, 034330 (2006).

    Article  ADS  Google Scholar 

  33. A. Umeya, and K. Muto, Phys. Rev. C 69, 024306 (2004).

    Article  ADS  Google Scholar 

  34. K. Yoshinada, Phys. Rev. C 26, 1784 (1982).

    Article  ADS  Google Scholar 

  35. A. M. Shirokov, J. P. Vary, A. I. Mazur, and T. A. Weber, Phys. Lett. B 644, 33 (2007).

    Article  ADS  Google Scholar 

  36. D. R. Entem, and R. Machleidt, Phys. Rev. C 68, 041001 (2003).

    Article  ADS  Google Scholar 

  37. B. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984); B. A. Brown, and B. H. Wildenthal, Ann. Rev. Nucl. Part. Sci. 38, 29 (1988).

    Article  ADS  Google Scholar 

  38. B. A. Brown, and W. A. Richter, Phys. Rev. C 74, 034315 (2006).

    Article  ADS  Google Scholar 

  39. L. Liu, and J. Li, Sci. China-Phys. Mech. Astron. 57, 239 (2014).

    Article  ADS  Google Scholar 

  40. H. T. Li, and Z. Z. Ren, Sci. China-Phys. Mech. Astron. 57, 1005 (2014).

    Article  ADS  Google Scholar 

  41. Y. J. Ren, and Z. Z. Ren, Sci. China-Phys. Mech. Astron. 58, 012002 (2015).

    Google Scholar 

  42. T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, Phys. Rev. Lett. 105, 032501 (2010).

    Article  ADS  Google Scholar 

  43. T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, and M. H. Jensen, Phys. Rev. Lett. 104, 012501 (2010).

    Article  ADS  Google Scholar 

  44. N. Tsunoda, T. Otsuka, K. Tsukiyama, and M. H. Jensen, Phys. Rev. C 84, 044322 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoBao Wang or GuoXiang Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dong, G., Li, Q. et al. An investigation of ab initio shell-model interactions derived by no-core shell model. Sci. China Phys. Mech. Astron. 59, 692011 (2016). https://doi.org/10.1007/s11433-016-0105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0105-8

Keywords

Navigation