Skip to main content
Log in

Simulation of triaxial response of granular materials by modified DEM

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A modified discrete element method (DEM) with rolling effect taken into consideration is developed to examine macroscopic behavior of granular materials in this study. Dimensional analysis is firstly performed to establish the relationship between macroscopic mechanical behavior, mesoscale contact parameters at particle level and external loading rate. It is found that only four dimensionless parameters may govern the macroscopic mechanical behavior in bulk. The numerical triaxial apparatus was used to study their influence on the mechanical behavior of granular materials. The parametric study indicates that Poisson’s ratio only varies with stiffness ratio, while Young’s modulus is proportional to contact modulus and grows with stiffness ratio, both of which agree with the micromechanical model. The peak friction angle is dependent on both inter-particle friction angle and rolling resistance. The dilatancy angle relies on inter-particle friction angle if rolling stiffness coefficient is sufficiently large. Finally, we have recommended a calibration procedure for cohesionless soil, which was at once applied to the simulation of Chende sand using a series of triaxial compression tests. The responses of DEM model are shown in quantitative agreement with experiments. In addition, stress-strain response of triaxial extension was also obtained by numerical triaxial extension tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lignon S, Laouafa F, Prunier F, et al. Hydro-mechanical modelling of landslides with a material instability criterion. Geotechnique, 2009, 59(6): 513–524

    Article  Google Scholar 

  2. Fu Z, Li J. Strength softening models of soil and its application in rainfall-induced landslide simulation. Theor Appl Mech Lett, 2013, 3(4): 042002

    Article  MathSciNet  Google Scholar 

  3. Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47–65

    Article  Google Scholar 

  4. Ng T T. Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. Int J Numer Anal Methods Geomech, 2009, 33(4): 511–527

    Article  MATH  Google Scholar 

  5. Salot C, Gotteland P, Villard P. Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granular Matter, 2009, 11(4): 221–236

    Article  MATH  Google Scholar 

  6. Azéma E, Radjai F, Saussine G. Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater, 2009, 41(6): 729–741

    Article  Google Scholar 

  7. Ji S. Probability analysis of contact forces in quasi-solid-liquid phase transition of granular shear flow. Sci China-Phys Mech Astron, 2013, 56(2): 395–403

    Article  ADS  Google Scholar 

  8. O’Sullivan C. Particulate Discrete Element Modelling: A Geomechanics Perspective. New York: Taylor & Francis, 2011. 449–494

    Google Scholar 

  9. Thornton C. Numerical simulation of deviatoric shear deformation of granular media. Géotechnique, 2000, 50(1): 43–53

    Article  Google Scholar 

  10. Jiang M J, Leroueil S, Konrad J M. Insight into strength functions in unsaturated granulate by DEM analysis. Comput Geotech, 2004, 31(6): 473–489

    Article  Google Scholar 

  11. Wang Y H, Leung S C. A particulate scale investigation of cemented sand behaviour. Canadian Geotech J, 2008, 45(1): 29–44

    Article  MathSciNet  Google Scholar 

  12. Utili S, Nova R. DEM analysis of bonded granular geomaterials. Int J Numer Anal Methods Geomech, 2008, 32(17): 1997–2031

    Article  MATH  Google Scholar 

  13. Jiang M J, Yan H B, Zhu H H, et al. Modeling shear behaviour and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput Geotech, 2011, 38(1): 14–29

    Article  Google Scholar 

  14. Jiang M J, Yu H S, Harris D. Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int J Numer Anal Methods Geomech, 2006, 30(8): 723–761

    Article  Google Scholar 

  15. Jiang M J, Yin Z Y. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method. Tunnelling Underground Space Tech, 2012, 32: 251–259

    Article  Google Scholar 

  16. Mitchell J K, Soga K. Fundamentals of Soil Behavior. New York: Wiley, 2005. 87–91

    Google Scholar 

  17. Radjai F, Dubois F. Discrete-element Model of Granular Materials. New York: Wiley, 2011. 123–124

    Google Scholar 

  18. Mollon G, Zhao J. Fourier-voronoi-based generation of realistic samples for discrete modelling of granular materials. Granular Matter, 2012, 14(5): 621–638

    Article  Google Scholar 

  19. Iwashita K. Mechanics of Granular Materials: An Introduction. Rotterdam: Taylor & Francis, 1999. 178–183

    Google Scholar 

  20. Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by dem. J Eng Mech, 1998, 124(3): 285–292

    Article  Google Scholar 

  21. Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol, 2000, 109(1): 192–205

    Article  Google Scholar 

  22. Jiang M, Yu H S, Harris D. A novel discrete model for granular material incorporating rolling resistance. Comput Geotech, 2005, 32(5): 340–357

    Article  Google Scholar 

  23. Wang D, Zhou Y. Discrete element simulation of localized deformation in stochastic distributed granular materials. Sci China Ser G-Phys Mech Astron, 2008, 51(9): 1403–1415

    Article  ADS  MATH  Google Scholar 

  24. Plassiard J P, Belheine N, Donze F V. A spherical discrete element model: Calibration procedure and incremental response. Granular Matter, 2009, 11(5): 293–306

    Article  MATH  Google Scholar 

  25. Belheine N, Plasslard J P, Donze F V, et al. Numerical simulation of drained triaxial test using 3d discrete element modeling. Comput Geotech, 2009, 36(1–2): 320–331

    Article  Google Scholar 

  26. Duriez J, Darve F, Donze F V. A discrete modeling-based constitutive relation for infilled rock joints. Int J Rock Mech Mining Sci, 2011, 48(3): 458–468

    Article  Google Scholar 

  27. Scholtès L, Donzé F V, Khanal M. Scale effects on strength of geomaterials, case study: Coal. J Mech Phys Solids, 2011, 59(5): 1131–1146

    Article  ADS  MATH  Google Scholar 

  28. Estrada N, Taboada A, Radjaï F. Shear strength and force transmission in granular media with rolling resistance. Phys Rev E, 2008, 78(2): 021301

    Article  ADS  Google Scholar 

  29. Šmilauer V, Catalano E, Chareyre B, et al. Yade Documentation. The Yade Project (http://yade-demorg/doc/), 2010

    Google Scholar 

  30. Li G X. 3d Constitutive Relationships for Soils and Experiment Validation (in Chinese). Dissertation for Doctoral Degree. Beijing: Tsinghua University, 1985. 34–43

    Google Scholar 

  31. Liao C L, Chang T P, Young D H, et al. Stress-strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct, 1997, 34(31–32): 4087–4100

    Article  MATH  Google Scholar 

  32. PFC3D UsM. Itasca Consulting Group. Inc, Minneapolis, USA, 2005

  33. Kozicki J, Donze F V. Yade-open dem: An open-source software using a discrete element method to simulate granular material. Eng Comput, 2009, 26(7–8): 786–805

    Article  MATH  Google Scholar 

  34. Weatherley D. Esys-particle v2. 0 User’s Guide. 2009

    Google Scholar 

  35. Scholtès L, Chareyre B, Nicot F, et al. Micromechanics of granular materials with capillary effects. Int J Eng Sci, 2009, 47(1): 64–75

    Article  MATH  Google Scholar 

  36. Wang X L, Li J C. Numerical triaxial apparatus and application. Appl Mech Mater, 2013, 353: 3251–3255

    Article  Google Scholar 

  37. Voivret C, Radjai F, Delenne J Y, et al. Space-filling properties of polydisperse granular media. Phys Rev E, 2007, 76(2): 021301

    Article  ADS  Google Scholar 

  38. Agnolin I, Roux J N. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys Rev E, 2007, 76(6): 061302

    Article  ADS  MathSciNet  Google Scholar 

  39. Jiang M J, Konrad J M, Leroueil S. An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech, 2003, 30(7): 579–597

    Article  Google Scholar 

  40. Chareyre B, Villard P. Discrete element modeling of curved geosynthetic anchorages with known macro-properties. J Eng Mech-ASCE, 2005, 131(7): 197–203

    Article  Google Scholar 

  41. Gilabert F A, Roux J N, Castellanos A. Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states. Phys Rev E, 2007, 75(1): 011303

    Article  ADS  MathSciNet  Google Scholar 

  42. Tan Q M. Dimensional Analysis: With Case Studies in Mechanics. Heidelberg: Springer, 2011. 7–16

    Book  Google Scholar 

  43. Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441(7094): 727–730

    Article  ADS  Google Scholar 

  44. MiDi GDR. On dense granular flows. Eur Phys J E, 2004, 14(4): 341–365

    Article  Google Scholar 

  45. Hicher P Y, Chang C S. Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials. J Eng Mech-ASCE, 2005, 131(11): 1184–1194

    Article  Google Scholar 

  46. Cambou B, Jean M, Radjaï F. Micromechanics of Granular Materials. London: Wiley Online Library, 2009. 101–147

    Book  MATH  Google Scholar 

  47. Chang C S, Liao C L. Estimates of elastic modulus for media of randomly packed granules. Appl Mech Rev, 1994, 47(1): 197–206

    Article  ADS  Google Scholar 

  48. Li G X. Advanced Soil Mechanics (in Chinese). Beijing: Tsing University Press, 2004. 117–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoLiang Wang or JiaChun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, J. Simulation of triaxial response of granular materials by modified DEM. Sci. China Phys. Mech. Astron. 57, 2297–2308 (2014). https://doi.org/10.1007/s11433-014-5605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5605-z

Keywords

Navigation