Skip to main content
Log in

Mechanism, condition and characteristics for the formation of the network structure in Zr-Al-Ni-Cu bulk metallic glasses

  • Article
  • Condensed Matter Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Mechanism, condition and characteristics for the formation of the network structure in a group of Zr-Al-Ni-Cu bulk metallic glasses (BMGs) were investigated. The results show that the constituent segregation and/or the symplastic growth would be the mechanisms for the formation of the cell structure in the present Zr-Al-Ni-Cu BMGs. The cell structure can be easily obtained for the glass forming alloys whose compositions locate nearby the eutectic point. The shorter the distance is from the eutectic point, the larger the cell and the thicker the cell wall of the network structure will be. The present investigation would provide useful information for the development of the BMG with the network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mater Sci Eng R, 2004, 44: 45–89

    Article  Google Scholar 

  2. Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater, 2011, 59: 2243–2267

    Article  Google Scholar 

  3. Liu Z Q, Huang L, Wu W, et al. Novel low Cu content and Ni-free Zr-based bulk metallic glasses for biomedical applications. J Non-Cryst Solids, 2013, 363: 1–5

    Article  ADS  Google Scholar 

  4. Li H F, Zheng Y F, Xu F, et al. In vitro investigation of novel Ni free Zr-based bulk metallic glasses as potential biomaterials. Mater Lett, 2012, 75: 74–76

    Article  Google Scholar 

  5. Hufnagel T C, Brennan S. Short- and medium-range order in (Zr70Cu20Ni10)90−xTaxAl10 bulk amorphous alloys. Phys Rev B, 2003, 67: 014203

    Article  ADS  Google Scholar 

  6. Lee M, Kim H K, Lee J C. Icosahedral medium-range orders and backbone formation in an amorphous alloy. Met Mater Int, 2010, 16: 877–881

    Article  Google Scholar 

  7. Hirata A, Hirotsu Y, Kuboya S, et al. Local structural fluctuation in Pd-Ni-P bulk metallic glasses examined using nanobeam electron diffraction. J Alloys Compd, 2009, 483: 64–69

    Article  Google Scholar 

  8. Zeng Q S, Sheng H W, Ding Y, et al. Long-range topological order in metallic glass. Science, 2011, 332: 1404–1406

    Article  ADS  Google Scholar 

  9. Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385–1388

    Article  ADS  Google Scholar 

  10. Wang J G, Zhao D Q, Pan M X, et al. Mechanical heterogeneity and mechanism of plasticity in metallic glasses. Appl Phys Lett, 2009, 94: 031904

    Article  ADS  Google Scholar 

  11. Yu H B, Shen X, Wang Z, et al. Tensile plasticity in metallic glasses with pronounced β relaxations. Phys Rev Lett, 2012, 108: 015504

    Article  ADS  Google Scholar 

  12. Du X H, Huang J C, Chen H M, et al. Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy. Intermetallics, 2009, 17: 607–613

    Article  Google Scholar 

  13. Du X H, Huang J C, Hsieh K C, et al. Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl Phys Lett, 2007, 91: 131901

    Article  ADS  Google Scholar 

  14. Ichitsubo T, Kato H, Matsubara E, et al. Static heterogeneity in metallic glasses and its correlation to physical properties. J Non-Cryst Solids, 2011, 357: 494–500

    Article  ADS  Google Scholar 

  15. Lund A C, Schuh C A. Topological and chemical arrangement of binary alloys during severe deformation. J Appl Phys, 2004, 95: 4815–4822

    Article  ADS  Google Scholar 

  16. Guo F Q, Poona S J, Shiflet G J. Networking amorphous phase reinforced titanium composites which show tensile plasticity. Phil Mag Lett, 2008, 88: 615–622

    Article  ADS  Google Scholar 

  17. Caron A, Wunderlich R, Gua L, et al. Structurally enhanced anelasticity in Zr-based bulk metallic glasses. Scripta Mater, 2011, 64: 946–949

    Article  Google Scholar 

  18. Cai A H, Ding D W, Xiong X, et al. Design of Zr-Al-Ni-Cu bulk metallic glasses with network structures. Mater Des, 2014, 63: 233–237

    Article  Google Scholar 

  19. Cai A H, Xiong X, Liu Y, et al. Compositional optimization of glass forming alloys based on critical dimension by using artificial neural network. Trans Nonferrous Met Soc China, 2014, 24: 1458–1466

    Article  Google Scholar 

  20. Liu Y, Liu C T, George E P, et al. Thermal diffusion and compositional inhomogeneity in cast Zr50Cu50 bulk metallic glass. Appl Phys Lett, 2006, 89: 051919

    Article  ADS  Google Scholar 

  21. Wang W H. Elastic moduli, elastic model and elastic perspectives of metallic glasses. Prog Mater Sci, 2012, 57: 487–656

    Article  Google Scholar 

  22. Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system. Appl Phys Lett, 2004, 84: 4029–4031

    Article  ADS  Google Scholar 

  23. Cai A H, Xiong X, Liu Y, et al. Design of new Zr-Al-Ni-Cu bulk metallic glasses. J Alloys Compd, 2009, 468: 432–437

    Article  Google Scholar 

  24. Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater, 2002, 50: 3501–3512

    Article  Google Scholar 

  25. Liu B, Liu L. The effect of microalloying on thermal stability and corrosion resistance of Cu-based bulk metallic glasses. Mater Sci Eng A, 2006, 415: 286–290

    Article  Google Scholar 

  26. Zander D, KÖster U. Corrosion of amorphous and nanocrystalline Zr-based alloys. Mater Sci Eng A, 2004, 375–377: 53–59

    Article  Google Scholar 

  27. Qin C L, Zhang W, Kimura H, et al. New Cu-Zr-Al-Nb bulk glassy alloys with high corrosion resistance. Mater Trans JIM, 2004, 45: 1958–1961

    Article  Google Scholar 

  28. Pang S J, Shek C H, Ma C, et al. Corrosion behavior of a glassy Ti-Zr-Hf-Cu-Ni-Si alloy. Mater Sci Eng A, 2007, 449–451: 557–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnHui Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, W., Ding, D., Cai, A. et al. Mechanism, condition and characteristics for the formation of the network structure in Zr-Al-Ni-Cu bulk metallic glasses. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-014-5602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5602-2

Keywords

Navigation