Skip to main content
Log in

The rate of gghγγ at LHC predicted by three different littlest Higgs models with T-parity

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We perform a comparative study for the LHC di-photon Higgs signal in three different littlest Higgs models with T-parity (named LHT-I, LHT-II and LHT-III). We find that compared with the Standard Model prediction, the di-photon rate is always suppressed and the suppression extent can be different for different models. The LHC will soon give a solid judgement whether the di-photon rate is larger than the SM prediction, which can be utilized as a sensitive probe for the three models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkani-Hamed N, Cohen A G, Georgi H. Electroweak symmetry breaking from dimensional deconstruction. Phys Lett B, 2001, 513: 232–240; Arkani-Hamed N, Cohen A G, Gregoire T, et al. Phenomenology of electroweak symmetry breaking from theory space. J High Energy Phys, 2002, 0208: 021

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Kaplan D E, Schmaltz M. The Little Higgs from a simple group. J High Energy Phys, 2003, 0310: 039; Low I, Skiba W, Smith D. Little Higgses from an antisymmetric condensate. Phys Rev D, 2002, 66: 072001; Chang S. A littlest Higgs model with custodial SU(2) symmetry. J High Energy Phys, 2003, 0312: 057; Cai H, Cheng H C, Terning J. A quirky little Higgs model. J High Energy Phys, 2009, 0905: 045; Freitas A, Schwaller P, Wyler D. A little Higgs model with exact dark matter parity. J High Energy Phys, 2009, 0912: 027

    Article  ADS  MathSciNet  Google Scholar 

  3. Arkani-Hamed N, Cohen A G, Katz E, et al. The littlest Higgs. J High Energy Phys, 2002, 0207: 034

    Article  ADS  MathSciNet  Google Scholar 

  4. Schmaltz M. The simplest little Higgs. J High Energy Phys, 2004, 0408: 056

    Article  ADS  MathSciNet  Google Scholar 

  5. Cheng H C, Low I. Little hierarchy, little Higgses, and a little symmetry. J High Energy Phys, 2004, 0408: 061; Low I. T parity and the littlest Higgs. J High Energy Phys, 2004, 0410: 067

    Article  ADS  MathSciNet  Google Scholar 

  6. Cheng H C, Low I, Wang L T. Top partners in little Higgs theories with T-parity. Phys Rev D, 2006, 74: 055001

    Article  ADS  Google Scholar 

  7. Han X F, Wang L, Zhang F. An alternative implementation of T-parity in fermion sector and the channel VVh → τ\(\bar \tau \) at LHC. Mod Phys Lett A, 2011, 26: 2079–2089

    Article  ADS  Google Scholar 

  8. Hewett J L, Petriello F J, Rizzo T G. Constraining the littlest Higgs. J High Energy Phys, 2003, 0310: 062; Chen M C, Dawson S. One loop radiative corrections to the rho parameter in the littlest Higgs model. Phys Rev D, 2004, 70: 015003; Chen M C. Models of little Higgs and electroweak precision tests. Mod Phys Lett A, 2006, 21: 621-638

    Article  ADS  Google Scholar 

  9. Cheng H C, Low I. TeV symmetry and the little hierarchy problem. J High Energy Phys, 2003, 0309: 051

    Article  ADS  Google Scholar 

  10. Wang L, Yang J M. Higgs boson productions at LHC as a probe of different littlest Higgs models with T-parity. Phys Rev D, 2008, 77: 015020; Wang L, Yang J M. Higgs boson decays and production via gluon fusion at LHC in littlest Higgs models with T-parity. Phys Rev D, 2009, 79: 055013

    Article  ADS  Google Scholar 

  11. CMS collaboration. Update of the combination of Higgs Boson searches in 1.0 to 2.3 fb−1 of pp collisions data taken at \(\sqrt s \) = 7 TeV with the ATLAS experiment at the LHC. Dec 13, 2011

  12. CMS collaboration. Search for the standard model Higgs boson decaying into two photons in pp collisions at \(\sqrt s \) = 7 TeV. Phys Lett B, 2012, 710: 403–425

    Article  ADS  Google Scholar 

  13. ATLAS collaboration. Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb−1 of pp collisions at sqrt(s)=7 TeV with ATLAS. Phys Rev Lett, 2012, 108: 111803

    Article  ADS  Google Scholar 

  14. Djouadi A, Driesen V, Hollik W, et al. The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime. Eur Phys J C, 1998, 1: 149–162; Huang C S, Wu X H. Damped sin(β - α) of Higgs couplings and the lightest Higgs production at gamma gamma colliders in MSSM. Phys Rev D, 2002, 66: 075002; Carena M, Gori S, Shah N R, et al. A 125 GeV SM-like Higgs in the MSSM and the YY rate. J High Energy Phys, 2012, 1203: 014; Cao J, Heng Z, Li D, et al. Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM. Phys Lett B, 2012, 710: 665-670; Cao J, Heng Z, Yang J, et al. A SM-like Higgs near 125 GeV in low energy SUSY: A comparative study for MSSM and NMSSM. J High Energy Phys, 2012, 1203: 086

    ADS  Google Scholar 

  15. Posch P. Enhancement of h → γγ in the two Higgs doublet model type I. Phys Lett B, 2011, 696: 447–453; Burdman G, Haluch C, Matheus R. Is the LHC observing the pseudo-scalar state of a two-Higgs doublet model? arXiv:1112.3961

    Article  ADS  Google Scholar 

  16. Arhrib A, Benbrik R, Gaur N. H → γγ in inert Higgs doublet model. arXiv:1201.2644

  17. Cao J, Heng Z, Liu T, et al. Di-photon Higgs signal at the LHC: A comparative study for different supersymmetric models. Phys Lett B, 2011, 703: 462–468; Ellwanger U. Enhanced di-photon Higgs signal in the next-to-minimal supersymmetric standard model. Phys Lett B, 2011, 698: 293–296; Ellwanger U. A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM. J High Energy Phys, 2012, 1203: 044

    Article  ADS  Google Scholar 

  18. Arhrib A, Benbrik R, Chabab M, et al. Higgs boson decay into 2 photons in the type II Seesaw model. arXiv:1112.5453; Perez P F, Patel H H, Ramsey-Musolf M J, et al. Triplet scalars and dark matter at the LHC. Phys Rev D, 2009, 79: 055024

    Google Scholar 

  19. Han T, Logan H E, McElrath B, et al. Loop induced decays of the little Higgs: Hgg, γγ. Phys Lett B, 2003, 563: 191–202

    Article  ADS  Google Scholar 

  20. Chen C R, Tobe K, Yuan C P. Higgs boson production and decay in little Higgs models with T-parity. Phys Lett B, 2006, 640: 263–271

    Article  ADS  Google Scholar 

  21. Wang L, Yang JM. The LHC di-photon Higgs signal predicted by little Higgs models. Phys Rev D, 2011, 84: 075024

    Article  ADS  Google Scholar 

  22. Hubisz J, Meade P. Phenomenology of the littlest Higgs with T-parity. Phys Rev D, 2005, 71: 035016

    Article  ADS  Google Scholar 

  23. Hubisz J, Meade P, Noble A, et al. Electroweak precision constraints on the littlest Higgs model with T parity. J High Energy Phys, 2006, 0601: 135

    Article  ADS  Google Scholar 

  24. Particle Data Group. Review of particle physics. Phys Lett B, 2008, 667: 1–1340

    Article  ADS  Google Scholar 

  25. Djouadi A, Kalinowski J, Spira M. HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension. Chin Phys C, 1998, 108: 56–74

    MATH  Google Scholar 

  26. Logan H E. The littlest Higgs boson at a photon collider. Phys Rev D, 2004, 70: 115003

    Article  ADS  Google Scholar 

  27. Wang L, Xu F, Yang J M. Higgs boson production in photon-photon collision at ILC: A comparative study in different little Higgs models. J High Energy Phys, 2010, 1001: 107

    Article  ADS  Google Scholar 

  28. Gunion J F, Haber H E, Kane G L, et al. The Higgs Hunter’s guide. Front Phys, 2000, 80: 90–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Wang, L. The rate of gghγγ at LHC predicted by three different littlest Higgs models with T-parity. Sci. China Phys. Mech. Astron. 56, 724–731 (2013). https://doi.org/10.1007/s11433-013-5040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5040-6

Keywords

Navigation