Skip to main content
Log in

Optical bistability based on surface plasmon coupled between two noble metal films involving Kerr materials

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We successfully investigate an optical bistability phenomenon in a layered structure consisting of Kretschmann configuration involving the Kerr-type nonlinear and the silver film. Pure theoretical approaches are employed to investigate that the surface plasmon could easily be coupled and both the reflection and transmission curves versus the incident intensity forms optical bistability. The transmission curves are greatly influenced by the thickness of the second silver film. These results may be useful for designing novel surface plasmon-based optical devices and will be essential for future classical and quantum information processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Priem G, Dumon P, Bogaerts W, et al. Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures. Opt Express, 2005, 13(23): 9623–9628

    Article  ADS  Google Scholar 

  2. Wurtz G A, Pollard R, Zayats A V. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett, 2006, 97(5): 057402

    Article  ADS  Google Scholar 

  3. Min C J, Wang P, Chen C C, et al. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt Lett, 2008, 33(8): 869–871

    Article  ADS  Google Scholar 

  4. Shen Y, Wang G P. Optical bistability in metal gap waveguide nanocavities. Opt Express, 2008, 16(12): 8421–8426

    Article  ADS  MathSciNet  Google Scholar 

  5. Large N, Abb M, Aizpurua J, et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett, 2010, 10(5): 1741–1746

    Article  ADS  Google Scholar 

  6. Zhou F, Liu Y, Li Z Y, et al. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Opt Express, 2010, 18(13): 13337–13344

    Article  ADS  Google Scholar 

  7. Pande M B, Gupta S D. Nonlinearity-induced resonances and optical multistability with coupled surface plasmons in a symmetric layered structure. Opt Lett, 1990, 15(17): 944–946

    Article  ADS  Google Scholar 

  8. Gupta S D, Agarwal G S. Optical bistability with surface plasmons beyond plane waves in a nonlinear dielectric. J Opt Soc Am B, 1986, 3(2): 236–238

    Article  ADS  MathSciNet  Google Scholar 

  9. Pande L K, Gupta S D. Effects of saturation on optical bistability with coupled surface plasmons. Pramana-J Phys, 1991, 37: 357–362

    Article  ADS  Google Scholar 

  10. Litchinitser N M, Gabitov I R, Maimistov A I, et al. Effect of an optical negative index thin film on optical bistability. Opt Lett, 2007, 32(2): 151–153

    Article  ADS  Google Scholar 

  11. Zhou H C, Chen X, Hou P, et al. Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric. Opt Lett, 2008, 33(11): 1249–1251

    Article  ADS  Google Scholar 

  12. Krestchmann E. The determination of the optical constants of metals by excitation of surface plasmons. Z Phys, 1971, 241: 313–324

    Article  ADS  Google Scholar 

  13. Lipson M. Guiding, modulating, and emitting light on silicon — challenges and opportunities. J Lightw Technol, 2005, 23: 4222–4238

    Article  ADS  Google Scholar 

  14. O’Brien J L, Furusawa A, Vuckovic J. Photonic quantum technologies. Nat Photon, 2009, 3: 687–695

    Article  ADS  Google Scholar 

  15. Politi A, Cryan M J, Rarity J G, et al. Silica-on-silicon waveguide quantum circuits. Science, 2008, 320: 646–649

    Article  ADS  Google Scholar 

  16. Watts M R, Haus H A, Ippen E P. Integrated mode-evolution-based polarization splitter. Opt Lett, 2005, 30: 967–969

    Article  ADS  Google Scholar 

  17. Barwicz T, Watts M R, Popovic M A, et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photon, 2007, 1: 57–60

    Article  ADS  Google Scholar 

  18. Zou C L, Sun F W, Dong C H, et al. Broadband integrated polarization beam splitter with surface plasmon. Opt Lett, 2011, 36(18): 183630

    Article  ADS  Google Scholar 

  19. Chen J X, Wang P, Wang X L, et al. Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure. Appl Phys Lett, 2009, 94: 081117

    Article  ADS  Google Scholar 

  20. Wu F Q, Han D Z, Li X, et al. Enhanced transmission mediated by guided resonances in metallic gratings coated with dielectric layers. Opt Express, 2008, 16: 6619–6624

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, G., Zhang, K., Chen, Y. et al. Optical bistability based on surface plasmon coupled between two noble metal films involving Kerr materials. Sci. China Phys. Mech. Astron. 56, 680–684 (2013). https://doi.org/10.1007/s11433-013-5005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5005-9

Keywords

Navigation