Skip to main content
Log in

Diluted magnetic oxides

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this review, we review the progress of research on ZnO- and In2O3-based diluted magnetic oxides (DMOs). Firstly, we present the preparation and characterization of DMOs. The former includes the preparation methods and conditions, and the latter includes the characterization techniques for measuring microstructures. Secondly, we introduce the magnetic and transport properties of DMOs, as well as the relationship between them. Thirdly, the origin and mechanism of the ferromagnetism are discussed. Fourthly, we introduce other related work, including computational work and pertinent heterogeneous structures, such as multilayers and magnetic tunnel junctions. Finally, we provide an overview and outlook for DMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951–956

    ADS  Google Scholar 

  2. Prinz G A. Magnetoelectronics. Science, 1998, 282: 1660–1663

    Google Scholar 

  3. Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488–1495

    ADS  Google Scholar 

  4. Pearton S J, Abernathy C R, Overberg M E, et al. Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys, 2003, 93: 1–13

    ADS  Google Scholar 

  5. Von Molnár S, Read D. New materials for semiconductor spin-elec-tronics. Proc IEEE, 2003, 91(5): 715–726

    Google Scholar 

  6. Zhao J H, Deng J J, Zheng H Z. Diluted magnetic semiconductors. Prog Phys, 2007, 27(2): 109–150

    Google Scholar 

  7. Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11: 2584–2589

    Google Scholar 

  8. Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287: 1019–1022

    ADS  Google Scholar 

  9. Sato K, Katayama-Yoshida H. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn J Appl Phys, 2000, 39: L555–L558

    ADS  Google Scholar 

  10. Sato K, Katayama-Yoshida H. Stabilization of ferromagnetic states by electron doping in Fe-, Co-or Ni-doped ZnO. Jpn J Appl Phys, 2001, 40: L334–L336

    ADS  Google Scholar 

  11. Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett, 2001, 79(7): 988–990

    ADS  Google Scholar 

  12. Sharma P, Gupta A, Rao K V, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater, 2003, 2: 673–677

    ADS  Google Scholar 

  13. Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291: 854–856

    ADS  Google Scholar 

  14. Yoo Y K, Xue Q, Lee H C, et al. Bulk synthesis and high-temperature ferromagnetism of (In1−x Fex)2O3−σ with Cu co-doping. Appl Phys Lett, 2005, 86: 042506

    ADS  Google Scholar 

  15. He J, Xu S, Yoo Y K, et al. Room temperature ferromagnetic n-type semiconductor in (In1−x Fex)2O3−σ. Appl Phys Lett, 2005, 86(5): 052503

    ADS  Google Scholar 

  16. Philip J, Punnoose A, Kim B I, et al. Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat Mater, 2006, 5: 298–304

    ADS  Google Scholar 

  17. Coey J M D, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett, 2004, 84(8): 1332–1334

    ADS  Google Scholar 

  18. Hong N H, Poirot N, Sakai J. Ferromagnetism observed in pristine SnO2 thin films. Phys Rev B, 2008, 77: 033205

    ADS  Google Scholar 

  19. Hong N H, Song J H, Raghavender A T, et al. Ferromagnetism in C-doped SnO2 thin films. Appl Phys Lett, 2011, 99: 052505

    ADS  Google Scholar 

  20. Yang S G, Li T, Gu B X, et al. Ferromagnetism in Mn-doped CuO. Appl Phys Lett, 2003, 83(18): 3746–3748

    ADS  Google Scholar 

  21. Li Y, Xu M, Pan L, et al. Structural and room-temperature ferromagnetic properties of Fe-doped CuO nanocrystals. J Appl Phys, 2010, 107: 113908

    ADS  Google Scholar 

  22. Venkatesan M, Fitzgerald C B, Coey J M D. Unexpected magnetism in a dielectric oxide. Nature, 2004, 430: 630

    ADS  Google Scholar 

  23. Pemmaraju C D, Sanvito S. Ferromagnetism driven by intrinsic point defects in HfO2. Phys Rev Lett, 2005, 94: 217205

    ADS  Google Scholar 

  24. Coey J M D, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide. Phys Rev B, 2005, 72: 024450

    ADS  Google Scholar 

  25. Chang Y H, Soo Y L, Lee W C, et al. Observation of room temperature ferromagnetic behavior in cluster-free, Co doped HfO2 films. Appl Phys Lett, 2007, 91: 082504

    ADS  Google Scholar 

  26. Zheng Y, Boulliard J C, Demaille D, et al. Study of ZnO crystals and Zn1−x MxO (M=Co, Mn) epilayers grown by pulsed laser deposition on ZnO(00 \(\bar 1\)) substrate. J Cryst Growth, 2005, 274: 156–166

    ADS  Google Scholar 

  27. Li X L, Xu X H, Quan Z Y, et al. Role of donor defects in enhancing ferromagnetism of Cu-doped ZnO films. J Appl Phys, 2009, 105: 103914

    ADS  Google Scholar 

  28. Li X L, Guo J F, Quan Z Y, et al. Defects inducing ferromagnetism in carbon-doped ZnO films. IEEE T Magn, 2010, 46(6): 1382–1384

    ADS  Google Scholar 

  29. Xu X H, Jiang F X, Zhang J, et al. Magnetic and transport properties of n-type Fe-doped In2O3 ferromagnetic thin films. Appl Phys Lett, 2009, 94: 212510

    ADS  Google Scholar 

  30. Li X L, Wang Z L, Qin X F, et al. Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. J Appl Phys, 2008, 103: 023911

    ADS  Google Scholar 

  31. Xu X H, Qin X F, Jiang F X, et al. The dopant concentration and annealing temperature dependence of ferromagnetism in Co-doped ZnO thin films. Appl Surf Sci, 2008, 254: 4956–4960

    ADS  Google Scholar 

  32. Lim S W, Jeong M C, Ham M H, et al. Hole-mediated ferromagnetic properties in Zn1−x MnxO thin films. Jpn J Appl Phys, 2004, 43: L280–L283

    ADS  Google Scholar 

  33. Biegger E, Fonin M, Rüdiger U, et al. Defect induced low temperature ferromagnetism in Zn1−x CoxO films. J Appl Phys, 2007, 101: 073904

    ADS  Google Scholar 

  34. Jin Z, Fukumura T, Kawasaki M, et al. High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl Phys Lett, 2001, 78(24): 3824–3826

    ADS  Google Scholar 

  35. Nielsen K, Bauer S, Lübbe M, et al. Ferromagnetism in epitaxial Zn0.95Co0.05O films grown on ZnO and Al2O3. Phys Stat Sol A, 2006, 203(14): 3581–3596

    ADS  Google Scholar 

  36. Heo Y W, Ivill M P, Ip K, et al. Effects of high-dose Mn implantation into ZnO grown on sapphire, Appl Phys Lett, 2004, 84(13): 2292–2294

    ADS  Google Scholar 

  37. Venkataraj S, Ohashi N, Sakaguchi I, et al. Structural and magnetic properties of Mn-ion implanted ZnO films. J Appl Phys, 2007, 102: 014905

    ADS  Google Scholar 

  38. Hsu H S, Huang J C A, Huang Y H, et al. Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl Phys Lett, 2006, 88: 242507

    ADS  Google Scholar 

  39. Xu X H, Li X L, Jiang F X, et al. Recent progress in oxide based diluted magnetic semiconductors. Prog Phys, 2012, 32(4): 199–232

    Google Scholar 

  40. Song C, Zeng F, Geng K W, et al. Substrate-dependent magnetization in Co-doped ZnO insulating films. Phys Rev B, 2007, 76: 045215

    ADS  Google Scholar 

  41. Herng T S, Lau S P, Yu S F, et al. Ferromagnetic copper-doped ZnO deposited on plastic substrates. J Phys-Condens Matter, 2007, 19: 236214

    ADS  Google Scholar 

  42. Kim J H, Kim H, Kim D, et al. Magnetic properties of epitaxially grown semiconducting Zn1−x CoxO thin films by pulsed laser deposition. J Appl Phys, 2002, 92(10): 6066–6071

    ADS  Google Scholar 

  43. Liu Q, Yuan C L, Gan C L, et al. Effect of substrate temperature on pulsed laser ablated Zn0.95Co0.05O diluted magnetic semiconducting thin films. J Appl Phys, 2007, 101: 073902

    ADS  Google Scholar 

  44. Liu X C, Shi E W, Chen Z Z, et al. Effect of donor localization on the magnetic properties of Zn-Co-O system. Appl Phys Lett, 2008, 92: 042502

    ADS  Google Scholar 

  45. Liu X C, Shi E W, Chen Z Z, et al. Effect of oxygen partial pressure on the local structure and magnetic properties of Co-doped ZnO films. J Phys-Condens Matter, 2008, 20: 025208

    ADS  Google Scholar 

  46. Xu X H, Blythe H J, Ziese M, et al. Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature. New J Phys, 2006, 8: 135

    Google Scholar 

  47. Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett, 2004, 93(17): 177206

    ADS  Google Scholar 

  48. Hong N H, Sakai J, Huong N T, et al. Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys Rev B, 2005, 72: 045336

    ADS  Google Scholar 

  49. Gu Z B, Lu M H, Wang J, et al. Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films. Appl Phys Lett, 2006, 88: 082111

    ADS  Google Scholar 

  50. Yan W S, Sun Z H, Liu Q H, et al. Structures and magnetic properties of (Mn, N)-codoped ZnO thin films. Appl Phys Lett, 2007, 90: 242509

    ADS  Google Scholar 

  51. Hou D L, Ye X J, Meng H J, et al. Magnetic properties of n-type Cu-doped ZnO thin films. Appl Phys Lett, 2007, 90: 142502

    ADS  Google Scholar 

  52. Hou D L, Ye X J, Zhao X Y, et al. Room-temperature ferromagnetism in n-type Cu-doped ZnO thin films. J Appl Phys, 2007, 102: 033905

    ADS  Google Scholar 

  53. Schwartz D A, Gamelin D R. Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater, 2004, 16(23–24): 2115–2119

    Google Scholar 

  54. Kittilstved K R, Schwartz D A, Tuan A C, et al. Direct kinetic correlation of carriers and ferromagnetism in Co2+:ZnO. Phys Rev Lett, 2006, 97: 037203

    ADS  Google Scholar 

  55. Khare N, Kappers M J, Wei M, et al. Defect-induced ferromagnetism in Co-doped ZnO. Adv Mater, 2006, 18: 1449–1452

    Google Scholar 

  56. Ramachandran S, Narayan J, Prater J T. Effect of oxygen annealing on Mn doped ZnO diluted magnetic semiconductors. Appl Phys Lett, 2006, 88: 242503

    ADS  Google Scholar 

  57. Huang B, Zhu D L, Ma X C. Great influence of the oxygen vacancies on the ferromagnetism in the Co-doped ZnO films. Appl Surf Sci, 2007, 253: 6892–6895

    ADS  Google Scholar 

  58. Gao D Q, Xu Y, Zhang Z H, et al. Room temperature ferromagnetism of Cu doped ZnO nanowire arrays. J Appl Phys, 2009, 105: 063903

    ADS  Google Scholar 

  59. Schmidt H, Diaconu M, Hochmuth H, et al. Weak ferromagnetism in textured Zn1−x (TM)xO thin films. Superlattices Microstruct, 2006, 39: 334–339

    ADS  Google Scholar 

  60. Saeki H, Tabata H, Kawai T. Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun, 2001, 120: 439–443

    ADS  Google Scholar 

  61. Weng Z Z, Huang Z G, Lin W X. First-principles study of ferromagnetism in Ti-doped ZnO with oxygen vacancy. Phys B, 2012, 407: 743–747

    ADS  Google Scholar 

  62. Yan W, Sun Z, Liu Q, et al. Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl Phys Lett, 2007, 91: 062113

    ADS  Google Scholar 

  63. Liu X, Lin F, Sun L, et al. Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition. Appl Phys Lett, 2006, 88: 062508

    ADS  Google Scholar 

  64. Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 2005, 4: 173–179

    ADS  Google Scholar 

  65. Wan Q. Structural and magnetic properties of manganese and phosphorus codoped ZnO films on (0001) sapphire substrates. Appl Phys Lett, 2006, 89: 082515

    ADS  Google Scholar 

  66. Tietze T, Gacic M, Schütz G, et al. XMCD studies on Co and Li doped ZnO magnetic semiconductors. New J Phys, 2008, 10: 055009

    Google Scholar 

  67. Sluiter M H F, Kawazoe Y, Sharma P, et al. First principles based design and experimental evidence for a ZnO-based ferromagnet at room temperature. Phys Rev Lett, 2005, 94: 187204

    ADS  Google Scholar 

  68. Zhu W G, Zhang Z Y, Kaxiras E. Dopant-assisted concentration enhancement of substitutional Mn in Si and Ge. Phys Rev Lett, 2008, 100: 027205

    ADS  Google Scholar 

  69. Zhu W G, Qiu X F, Iancu V, et al. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys Rev Lett, 2009, 103: 226401

    ADS  Google Scholar 

  70. Ivill M, Pearton S J, Heo Y W, et al. Magnetization dependence on carrier doping in epitaxial ZnO thin films co-doped with Mn and P. J Appl Phys, 2007, 101: 123909

    ADS  Google Scholar 

  71. Jiang F X, Xu X H, Zhang J, et al. Role of carrier and spin in tuning ferromagnetism in Mn and Cr-doped In2O3 thin films. Appl Phys Lett, 2010, 96: 052503

    ADS  Google Scholar 

  72. Behan A J, Mokhtari A, Blythe H J, et al. Two magnetic regimes in doped ZnO corresponding to a dilute magnetic semiconductor and a dilute magnetic insulator. Phys Rev Lett, 2008, 100: 047206

    ADS  Google Scholar 

  73. Lu Z L, Hsu H S, Tzeng Y, et al. Carrier-mediated ferromagnetism in single crystalline (Co, Ga)-codoped ZnO films. Appl Phys Lett, 2009, 94: 152507

    ADS  Google Scholar 

  74. Yu Z G, He J, Xu S F, et al. Origin of ferromagnetism in semiconducting (In1−xy FexCuy)2O3−σ.. Phys Rev B, 2006, 74: 165321

    ADS  Google Scholar 

  75. Toyosaki H, Fukumura T, Yamada Y, et al. Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor. Nat Mater, 2004, 3: 221–224

    ADS  Google Scholar 

  76. Yamada Y, Ueno K, Fukumura T, et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science, 2011, 332: 1065–1067

    ADS  Google Scholar 

  77. Sinova J, Žutic I. New moves of the spintronics tango. Nat Mater, 2012, 11: 368–371

    ADS  Google Scholar 

  78. Banerjee S, Mandal M, Gayathri N, et al. Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl Phys Lett, 2007, 91: 182501

    ADS  Google Scholar 

  79. Xu Q Y, Schmidt H, Zhou S Q, et al. Room temperature ferromagnetism in ZnO films due to defects. Appl Phys Lett, 2008, 92: 082508

    ADS  Google Scholar 

  80. Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett, 2007, 99: 127201

    ADS  Google Scholar 

  81. Zhou S Q, Xu Q Y, Potzger K, et al. Room temperature ferromagnetism in carbon-implanted ZnO. Appl Phys Lett, 2008, 93: 232507

    ADS  Google Scholar 

  82. Zener C. Interaction between the d shells in the transition metals. Phys Rev, 1951, 81: 440–444

    ADS  MATH  Google Scholar 

  83. Dietl T, Haury A, Merle d’Aubigné Y. Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys Rev B, 1997, 55: R3347–R3350

    ADS  Google Scholar 

  84. Coey J M D, Wongsaprom K, Alaria J, et al. Charge-transfer ferromagnetism in oxide nanoparticles. J Phys D-Appl Phys, 2008, 41: 134012

    ADS  Google Scholar 

  85. Coey J M D, Stamenov P, Gunning R D, et al. Ferromagnetism in defect-ridden oxides and related materials. New J Phys, 2010, 12: 053025

    Google Scholar 

  86. Qi S, Jiang F, Fan J, et al. Carrier-mediated nonlocal ferromagnetic coupling between local magnetic polarons in Fe-doped In2O3 and Co-doped ZnO. Phys Rev B, 2011, 84: 205204

    ADS  Google Scholar 

  87. Lee E C, Chang K J. Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO. Phys Rev B, 2004, 69: 085205

    ADS  Google Scholar 

  88. Iusan D, Sanyal B, Eriksson O. Influence of defects on the magnetism of Mn-doped ZnO. J Appl Phys, 2007, 101: 09H101

    Google Scholar 

  89. Hu S J, Yan S S, Lin X L, et al. Electronic structure of Fe-doped In2O3 magnetic semiconductor with oxygen vacancies: Evidence for F-center mediated exchange interaction. Appl Phys Lett, 2007, 91: 262514

    ADS  Google Scholar 

  90. Hu S J, Yan S S, Zhao M W, et al. First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys Rev B, 2006, 73: 245205

    ADS  Google Scholar 

  91. Pemmaraju C D, Hanafin R, Archer T, et al. Impurity-ion pair induced high-temperature ferromagnetism in Co-doped ZnO. Phys Rev B, 2008, 78: 054428

    ADS  Google Scholar 

  92. Jin Z, Hasegawa K, Fukumura T, et al. Magnetoresistance of 3d transitionmetal-doped epitaxial ZnO thin films. Phys E, 2001, 10: 256–259

    Google Scholar 

  93. Wang J, Gu Z, Lu M, et al. Giant magnetoresistance in transitionmetal-doped ZnO films. Appl Phys Lett, 2006, 88: 252110

    ADS  Google Scholar 

  94. Wang D F, Ying Y, Thuy V T T, et al. Temperature-dependent magnetoresistance of ZnO thin film. Thin Solid Films, 2011, 520: 529–532

    ADS  Google Scholar 

  95. Behan A J, Mokhtari A, Blythe H J, et al. Magnetoresistance of magnetically doped ZnO films. J Phys-Condens Matter, 2009, 21: 346001

    Google Scholar 

  96. Stamenov P, Venkatesan M, Dorneles L S, et al. Magnetoresistance of Co-doped ZnO thin films. J Appl Phys, 2006, 99: 08M124

    Google Scholar 

  97. Andrearczyk T, Jaroszyński J, Grabecki G, et al. Spin-related magnetoresistance of n-type ZnO:Al and Zn1−x MnxO:Al thin films. Phys Rev B, 2005, 72: 121309(R)

    ADS  Google Scholar 

  98. Xu Q, Hartmann L, Schmidt H, et al. Magnetoresistance and anomalous Hall effect in magnetic ZnO films. J Appl Phys, 2007, 101: 063918

    ADS  Google Scholar 

  99. Xu Q, Hartmann L, Schmidt H, et al. Grundmann M, s-d exchange interaction induced magnetoresistance in magnetic ZnO. Phys Rev B, 2007, 76: 134417

    ADS  Google Scholar 

  100. Tian Y, Li Y, Wu T. Tuning magnetoresistance and exchange coupling in ZnO by doping transition metals. Appl Phys Lett, 2011, 99: 222503

    ADS  Google Scholar 

  101. Hartmann L, Xu Q, Schmidt H, et al. Spin polarization in Zn0.95-Co0.05O:(Al,Cu) thin films. J Phys D-Appl Phys, 2006, 39: 4920–4924

    ADS  Google Scholar 

  102. Reuss F, Frank S, Kirchner C, et al. Magnetoresistance in epitaxially grown degenerate ZnO thin films. Appl Phys Lett, 2005, 87: 112104

    ADS  Google Scholar 

  103. Yan S S, Ren C, Wang X, et al. Ferromagnetism and magnetore-sistance of Co-ZnO inhomogeneous magnetic semiconductors. Appl Phys Lett, 2004, 84: 2376–2378

    ADS  Google Scholar 

  104. Yan S S, Liu J P, Mei L M, et al. Spin-dependent variable range hopping and magnetoresistance in Ti1−x CoxO2 and Zn1−x CoxO magnetic semiconductor films. J Phys-Condens Matter, 2006, 18: 10469–10480

    ADS  Google Scholar 

  105. Tian Y F, Yan S S, Zhang Y P, et al. Transformation of electrical transport from variable range hopping to hard gap resistance in Zn1−x FexO1−v magnetic semiconductor films. J Appl Phys, 2006, 100: 103901

    ADS  Google Scholar 

  106. Tay M, Wu Y H, Han G C, et al. Ferromagnetism in inhomogeneous Zn1−x CoxO thin films. J Appl Phys, 2006, 100: 063910

    ADS  Google Scholar 

  107. Hsu C Y, Huang J C A, Chen S F, et al. Tunable magnetic order of Co nanoparticles and magnetotransport in Co/ZnO nanocomposites. Appl Phys Lett, 2008, 93: 072506

    ADS  Google Scholar 

  108. Quan Z Y, Xu X H, Li X L, et al. Investigation of structure and magnetoresistance in Co/ZnO films. J Appl Phys, 2010, 108: 103912

    ADS  Google Scholar 

  109. Quan Z, Liu W, Li X, et al. Structural and magnetotransport properties in Co/nonmagnetic films. Mater Lett, 2011, 65: 2982–2984

    Google Scholar 

  110. Quan Z Y, Liu W, Li X L, et al. Enhanced magnetization and spin injection efficiency in Co/ZnO films by Al doping. Mater Lett, 2012 (under review)

  111. Song C, Liu X J, Zeng F, et al. Fully epitaxial (Zn,Co)O/ZnO/(Zn, Co)O junction and its tunnel magnetoresistance. Appl Phys Lett, 2007, 91: 042106

    ADS  Google Scholar 

  112. Song C, Yang Y C, Li X W, et al. Anomalous voltage dependence of tunnel magnetoresistance in (Zn,Co)O-based junction with double barrier. Appl Phys Lett, 2007, 91: 172109

    ADS  Google Scholar 

  113. Pan F, Song C, Liu X J, et al. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater Sci Eng R, 2008, 62: 1–35

    Google Scholar 

  114. Chen G, Zeng F, Pan F. Enhanced spin injection and voltage bias in (Zn,Co)O/MgO/(Zn,Co)O magnetic tunnel junctions. Appl Phys Lett, 2009, 95: 232508

    ADS  Google Scholar 

  115. Ramachandran S, Prater J T, Sudhakar N, et al. Magnetic properties of epitaxial oxide heterostructures. Solid State Commun, 2008, 145: 18–22

    ADS  Google Scholar 

  116. Xu Q, Hartmann L, Zhou S, et al. Spin manipulation in Co-doped ZnO. Phys Rev Lett, 2008, 101: 076601

    ADS  Google Scholar 

  117. Toyosaki H, Fukumura T, Ueno K, et al. A ferromagnetic oxide semiconductor as spin injection electrode in magnetic tunnel junction. Jpn J Appl Phys Part 2005, 44: L896–L898

    ADS  Google Scholar 

  118. Toyosaki H, Fukumura T, Ueno K, et al. Ti1−x CoxO2−δ/AlOx/ Fe0.1Co0.9 magnetic tunnel junctions with varied AlOx thickness. J Appl Phys, 2006, 99: 08M102

    Google Scholar 

  119. Lee Y J, Kumar A, Marún I J V, et al. Magnetic tunnel junctions with Co:TiO2 magnetic semiconductor electrodes. IEEE Trans Magn, 2010, 46(6): 1683–1686

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Qi, S., Jiang, F. et al. Diluted magnetic oxides. Sci. China Phys. Mech. Astron. 56, 111–123 (2013). https://doi.org/10.1007/s11433-012-4966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4966-4

Keywords

Navigation