Skip to main content
Log in

Spin manipulations through electrical and thermoelectrical transport in magnetic tunnel junctions

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A brief review is presented, which includes the direct current, alternate current, electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction (MTJ), ferromagnet(FM)-quantum dot (QD)/FM-FM, double barrier MTJ, FM-marginal Fermi liquid-FM, FM-unconventional superconductor-FM (FUSF), quantum ring and optical spin-field-effect transistor. The magnetoresistances in those structures, spin accumulation effect in FM-QD-FM and FUSF systems, spin injection and spin filter into semiconductor, spin transfer effect, photon-assisted spin transport, magnonassisted tunneling, electron-electron interaction effect on spin transport, laser-controlled spin dynamics, and thermoelectrical spin transport are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61: 2472–2475

    Article  ADS  Google Scholar 

  2. Parkin S S, More N, Roche K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett, 1990, 64: 2304–2307

    Article  ADS  Google Scholar 

  3. Stiles M D. Exchange coupling in magnetic heterostructures. Phys Rev B, 1993, 48: 7238–7258; Bruno P. Theory of interlayer magnetic coupling. Phys Rev B, 1995, 52: 411–439; Himpsel F J. Magnetic quantum wells. J Phys-Condens Matter, 1999, 11: 9483–9494

    Article  ADS  Google Scholar 

  4. Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spinbased electronics vision for the future. Science, 2001, 294: 1488–1495; Moodera J S, Nassar J, Mathon G. Spin-tunneling in ferromagnetic junctions. Annu Rev Sci, 1999, 29: 381–432; Prinz G A. Magnetoelectronics. Science, 1998, 282: 1660–1663; Žutić I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323–410; Tserkovnyak Y, Brataas A, Bauer G E W, et al. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys, 2005, 77: 1375–1421; Bader S D, Parkin S S P. Spintronics. Annu Rev Condens Matter Phys, 2010, 1: 71–88

    Article  ADS  Google Scholar 

  5. Su G. Theory of Spintronic Transport in Magnetic Tunnel Junctions. Murray V N, ed. In: Progress in Ferromagnetism Research. New York: Nova Science, 2006. 85–123

    Google Scholar 

  6. Meservey R, Tedrow P M. Spin-polarized electron tunneling. Phys Rep, 1994, 238: 173–243

    Article  ADS  Google Scholar 

  7. Julliére M. Tunneling between ferromagnetic films. Phys Lett, 1975, 54A: 225–226

    ADS  Google Scholar 

  8. Moodera J S, Kinder L R, Wong T M, et al. Large Magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett, 1995, 74: 3273–3276

    Article  ADS  Google Scholar 

  9. Lee Y M, Hayakawa J, Ikeda S, et al. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl Phys Lett, 2007, 90: 212507

    Article  ADS  Google Scholar 

  10. Mao S, Chen Y, Liu F, et al. Commercial TMR heads for hard disk drives: Characterization and extendibility at 300 gbit/in2. IEEE Trans Magn, 2006, 42: 97–102

    Article  ADS  Google Scholar 

  11. Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 1996, 54: 9353–9358

    Article  ADS  Google Scholar 

  12. Slonczewski J C. Current-driven excitation of magnetic multilayers. J Magn Magn Mater, 1996, 159: L1–L7

    Article  ADS  Google Scholar 

  13. Stiles M D, Miltat J. Spin transfer torqe and dynamics. Hillebrands B, Thiaville A, eds. In: Spin Dynamics in Confined Magnetic Structures III: Topics in Applied Physics. 2006, 101: 225–308; Ralpha D C, Stiles M D. Spin transfer torques. J Magn Magn Mater, 2008, 320: 1190–1216

    Google Scholar 

  14. Albert F J, Katine J A, Burhman R A, et al. Spin-polarized current switching of a Co thin film nanomagnet. Appl Phys Lett, 2000, 77: 3809–3811

    Article  ADS  Google Scholar 

  15. Hosomi M, Yamagishi H, Yamamoto T, et al. A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. In: Tech Dig Int Electron Devices Meet (IEDM). 2005. 459–462

  16. Zhu Z G, Su G, Zheng Q R, et al. Effect of spin-flip scattering on electrical transport in magnetic tunnel junctions. Phys Lett A, 2002, 300: 658–665

    Article  ADS  Google Scholar 

  17. Feng J F, Chen J Y, Venkatesan M, et al. Superparamagnetism in MgObased magnetic tunnel junctions with a thin pinned ferromagnetic electrode. Phys Rev B, 2010, 81: 205212

    Article  ADS  Google Scholar 

  18. Zhu Z G, Su G, Jin B, et al. Spin-flip scattering effect on the currentinduced spin torque in ferromagnet-insulator-ferromagnet tunnel junctions. Phys Lett A, 2003, 306: 249–254

    Article  ADS  Google Scholar 

  19. Landauer R. Johnson-Nyquist noise derived from quantum mechanical transmission. Physica D, 1989, 38: 226–229; Büttiker M. Capacitance, admittance, and rectification properties of small conductors. J Phys Cond Matt, 1993, 5: 9361–9378; Christen T, Büttiker M. Gaugeinvariant nonlinear electric transport in mesoscopic conductors. Europhys Lett, 1996, 35: 523–528; Low frequency admittance of a quantum point contact. Phys Rev Lett 19 1996, 77: 143–146

    Article  ADS  Google Scholar 

  20. Wang Z C, Su G. Analytical approach to spin-dependent transport in a mesoscopic magnetic conductor. Phys Rev B, 2003, 68: 024421

    Article  ADS  Google Scholar 

  21. Yuasa S, Nagahama T, Suzuki Y. Spin-polarized resonant tunneling in magnetic tunnel junctions. Science, 2002, 297: 234–237

    Article  ADS  Google Scholar 

  22. Mu H F, Zhu Z G, Zheng Q R, et al. Theoretical consideration of spinpolarized resonant tunneling in magnetic tunnel junctions. Phys Lett A, 2004, 323: 298–304

    Article  ADS  MATH  Google Scholar 

  23. Chen X, Zheng Q R, Su G. Spin transfer in a ferromagnet-quantum dot and tunnel-barrier-coupled Aharonov-Bohm ring system with Rashba spin-orbit interactions. J Phys Conden Matt, 2010, 22: 186004

    Article  ADS  Google Scholar 

  24. Rudziński W, Barnaś J. Tunnel magnetoresistance in ferromagnetic junctions: Tunneling through a single discrete level. Phys Rev B, 2001, 64: 085318; Fransson J, Eriksson O, Sandalov I. Many-body approach to spin-dependent transport in quantum dot systems. Phys Rev Lett, 2002, 88: 226601; Zhang P, Xue Q K, Wang Y, et al. Spin-dependent transport through an interacting quantum dot. Phys Rev Lett, 2002, 89: 286803; López R, Sánchez D. Nonequilibrium spintronic transport through an artificial kondo impurity: Conductance, magnetoresistance, and shot noise. Phys Rev Lett, 2003, 90: 116602; Martinek J, Utsumi Y, Imamura H, et al. Kondo effect in quantum dots coupled to ferromagnetic leads. Phys Rev Lett, 2003, 91: 127203; Bulka B R, Lipiński S. Coherent electronic transport and Kondo resonance in magnetic nanostructures. Phys Rev B, 2003, 67: 024404; Pedersen J N, Thomassen JQ, Flensberg K. Noncollinear magnetoconductance of a quantum dot. Phys Rev B, 2005, 72: 045341

    Article  ADS  Google Scholar 

  25. Sergueev N, Sun Q, Guo H, et al. Spin-polarized transport through a quantum dot: Anderson model with on-site Coulomb repulsion. Phys Rev B, 2002, 65: 165303; König J, Martinek J. Interaction-driven spin precession in quantum-dot spin valves. Phys Rev Lett, 2003, 90: 166602; Braun M, König J, Martinek J. Theory of transport through quantum-dot spin valves in the weak-coupling regime. Phys Rev B, 2004, 70: 195345; Rudziński W, Barnaś J, Świrkowicz R, et al. Spin effects in electron tunneling through a quantum dot coupled to noncollinearly polarized ferromagnetic leads. Phys Rev B, 2005, 71: 205307; Wetzels W, Bauer G E W, Grifoni M. Noncollinear singleelectron spin-valve transistors. Phys Rev B, 2005, 72: 020407(R); Fransson J. Angular conductance resonances of quantum dots noncollinearly coupled to ferromagnetic leads. Europhys Lett, 2005, 70: 796–802; Angular conductance resonances of quantum dots strongly coupled to noncollinearly oriented ferromagnetic leads. Phys Rev B, 2005, 72: 045415; Weymann I, Barna’s J. Cotunneling through a quantum dot coupled to ferromagnetic leads with noncollinear magnetizations. Eur Phys J B, 2005, 46: 289–299

    Article  ADS  Google Scholar 

  26. Mu H F, Su G, Zheng Q R. Spin current and current-induced spin transfer torque in ferromagnet-quantum dot-ferromagnet coupled systems. Phys Rev B, 2006, 73: 054414

    Article  ADS  Google Scholar 

  27. Chen X, Mu H F, Zheng Q R, et al. Spin accumulation on the spindependent transport through a quantum dot coupled to ferromagnet electrodes. Phys Lett A, 2006, 358: 47–52

    Article  ADS  MATH  Google Scholar 

  28. Brataas J, Nazarov Y V, Bauer G E W. Finite-element theory of transport in ferromagnet-normal metal systems. Phys Rev Lett, 2000, 84: 2481–2484; Brataas A, Nazarov Y V, Bauer G E W. Spin-transport in multi-terminal normal metal-ferromagnet systems with non-collinear magnetizations. Eur Phys J B, 2001, 22: 99–110

    Article  ADS  Google Scholar 

  29. Zhu Z G, Su G, Zheng Q R, et al. Time-dependent spin-polarized transport through a resonant tunneling structure with multiterminals. Phys Rev B, 2004, 70: 174403

    Article  ADS  Google Scholar 

  30. Zhang X, Li B Z, Sun G, et al. Spin-polarized tunneling and magnetoresistance in ferromagnet/insulator(semiconductor) single and double tunnel junctions subjected to an electric field. Phys Rev B, 1997, 56: 5484–5488; Spin-polarized resonant tunneling and quantum-size effect in ferromagnetic tunnel junctions with double barriers subjected to an electric field. Phys Lett A, 1998, 245: 133–138; Montaigne F, Nassar J, Vaures A, et al. Enhanced tunnel magnetoresistance at high bias voltage in double-barrier planar junctions. Appl Phys Lett, 1997, 73: 2829; Sheng L, Chen Y, Teng H Y, et al. Nonlinear transport in tunnel magnetoresistance systems. Phys Rev B, 1999, 59: 480–485; Stein S, Schmitz R, Kohlstedt H. Magneto-tunneling injection device (MAGTID). Solid State Commun, 2001, 117: 599–603; Colis S, Gieres G, Bar L, et al. Low tunnel magnetoresistance dependence versus bias voltage in double barrier magnetic tunnel junction. Appl Phys Lett, 2003, 83: 948; Han X F, Zhao S F, Li F F, et al. Switching properties and dynamic domain structures in double barrier magnetic tunnel junctions. J Magn Magn Mater, 2004, 282: 225–231; Niu Z P, Feng Z B, Yang J, et al. Tunneling magnetoresistance of double-barrier magnetic tunnel junctions in sequential and coherent regimes. Phys Rev B, 2006, 73: 014432; Nozaki T, Tezuka N, Inomata K. Quantum oscillation of the tunneling conductance in fully epitaxial double barrier magnetic tunnel junctions. Phys Rev Lett, 2006, 96: 027208; Wang Y, Lu Z Y, Zhang X G, et al. First-principles theory of quantum well resonance in double barrier magnetic tunnel junctions. Phys Rev Lett, 2006, 97: 087210

    Article  ADS  Google Scholar 

  31. Zeng Z M, Han X F, Zhan W S, et al. Oscillatory tunnel magnetoresistance in double barrier magnetic tunnel junctions. Phys Rev B, 2005, 72: 054419

    Article  ADS  Google Scholar 

  32. Chen X, Zheng Q R, Su G. Oscillations of tunnel magnetoresistance induced by spin-wave excitations in ferromagnet-ferromagnet-ferromagnet double-barrier tunnel junctions. Phys Rev B, 2007, 76: 144409

    Article  ADS  Google Scholar 

  33. Chen X, Zheng Q R, Su G. Spin transfer and critical current for magnetization reversal in ferromagnet-ferromagnet-ferromagnet doublebarrier tunnel junctions. Phys Rev B, 2008, 78: 104410

    Article  ADS  Google Scholar 

  34. Sun J Z. Spin-current interaction with a monodomain magnetic body: A model study. Phys Rev B, 2000, 62: 570–578

    Article  ADS  Google Scholar 

  35. Vas’ko V A, Larkin V A, Kraus P A, et al. Critical current suppression in a superconductor by injection of spin-polarized carriers from a ferromagnet. Phys Rev Lett, 1997, 78: 1134–1137; Dong Z W, Ramesh R, Venkatesan T, et al. Spin-polarized quasiparticle injection devices using Au/YBa2Cu3O7/LaAlO3/Nd0.7Sr0.3MnO3 heterostructures. Appl Phys Lett, 1997, 71: 1718; Upadhyay S K, Palanisami A, Louie R N, et al. Probing ferromagnets with andreev reflection. Phys Rev Lett, 1998, 81: 3247–3250; Yeh N C, Vasquez R P, Fu C C, et al. Nonequilibrium superconductivity under spin-polarized quasiparticle currents in perovskite ferromagnet-insulator-superconductor heterostructures. Phys Rev B, 1999, 60: 10522–10526; Sawa A, Kashiwaya S, Obara H, et al. Spin-polarized tunneling of La0.67Sr0.33MnO3/YBa2Cu3O7−δ junctions. Physica C, 2000, 339: 287–297

    Article  ADS  Google Scholar 

  36. Varma C M, Littlewood P B, Schmitt-Rink S. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys Rev Lett, 1989, 63: 1996–1999

    Article  ADS  Google Scholar 

  37. Mu H F, Su G, Zheng Q R, et al. Spin-polarized transport in ferromagnet-marginal Fermi liquid systems. Phys Rev B, 2005, 71: 064412

    Article  ADS  Google Scholar 

  38. Mu H F, Zheng Q R, Jin B, et al. Current-induced spin transfer torque in ferromagnet-marginal Fermi liquid double tunnel junctions. Phys Lett A, 2005, 336: 66–70

    Article  ADS  Google Scholar 

  39. Johnson M, Silsbee R H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys Rev Lett, 1985, 55: 1790–1793; Johnson M. Spin accumulation in gold films. Phys Rev Lett, 1993, 70: 2142–2145; Johnson M. Bipolar spin switch. Science, 1993, 260: 320–323; Johnson M. Spin coupled resistance observed in ferromagnet-superconductor-ferromagnet trilayers. Appl Phys Lett, 1994, 65: 1460–1462

    Article  ADS  Google Scholar 

  40. Soulen Jr R J, Byers JM, Osofsky MS, et al. Measuring the spin polarization of a metal with a superconducting point contact. Science, 1998, 282: 85–88; Jong M J M de, Beenakker C W J. Andreev Reflection in Ferromagnet-Superconductor Junctions. Phys Rev Lett, 1995, 74: 1657–1660; Takahashi S, Imamura H, Maekawa S. Spin imbalance and magnetoresistance in ferromagnet/superconductor/ferromagnet double tunnel junctions. Phys Rev Lett, 1999, 82: 3911–3914; Zheng Z, Xing D Y, Sun G, et al. Andreev reflection effect on spin-polarized transport in ferromagnet/superconductor/ferromagnet double tunnel junctions. Phys Rev B, 2000, 62: 14326; Tserkovnyak Y, Brataas A. Current and spin torque in double tunnel barrier ferromagnet-superconductorferromagnet systems. Phys Rev B, 2002, 65: 094517

    Article  ADS  Google Scholar 

  41. Jin B, Su G, Zheng Q R, et al. Phase inhomogeneity and scaling in ferromagnet-unconventional superconductor-ferromagnet double tunnel junctions. Phys Rev B, 2003, 68: 144504

    Article  ADS  Google Scholar 

  42. Fulde P, Ferrel A. Superconductivity in a strong spin-exchange field. Phys Rev, 1964, 135: A550–A563

    Article  ADS  Google Scholar 

  43. Larkin A, Ovchinnikov Y. Inhomogeneous state of superconductors. Sov Phys JETP, 1965, 20: 762–769

    MathSciNet  Google Scholar 

  44. Jin B, Su G, Zheng Q R. First- and second-order phase transitions, Fulde-Ferrel inhomogeneous state, and quantum criticality in ferromagnet/superconductor double tunnel junctions. Phys Rev B, 2005, 71: 144514

    Article  ADS  Google Scholar 

  45. Jin B, Su G, Zheng Q R. Fulde-Ferrel-Larkin-Ovchinnikov inhomogeneous superconducting state and phase transitions induced by spin accumulation in a ferromagnet-\(d_{x^2 - y^2 }\)-wave superconductor-ferromagnet tunnel junction. Phys Rev B, 2006, 73: 064518

    Article  ADS  Google Scholar 

  46. Zhu Z G, Su G. Magnitude of magnetic field dependence of a possible selective spin filter in ZnSe/Zn1−x MnxSe multilayer heterostructures. Phys Rev B, 2004, 70: 193310

    Article  ADS  Google Scholar 

  47. Zhu Z G. Selective spin injection controlled by electrical way in ferromagnet/quantum dot/semiconductor system. Phys Lett A, 2008, 372: 695–699

    Article  ADS  MATH  Google Scholar 

  48. Wang Z C, Zheng Q R, Su G, et al. Low frequency and weakly nonlinear spin transport in ferromagnet/insulator single and double junctions. Eur Phys J B, 2001, 19: 589–597; Wang Z C, Su G, Zheng Q R. Spindependent low-frequency and weakly nonlinear electrical transport in spin-polarized tunneling junctions. Phys Rev B, 2001, 64: 014407

    Article  ADS  Google Scholar 

  49. Wang Z C, Su G, Li L, et al. The effect of the geometric phase on spin-polarized electron tunnelling. J Phys Condens Matter, 2004, 16: 6713–6726

    Article  ADS  Google Scholar 

  50. Nitta J, Meijer F E, Takayanagi H. Spin-interference device. Appl Phys Lett, 1999, 75: 695–697

    Article  ADS  Google Scholar 

  51. Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56: 665–667

    Article  ADS  Google Scholar 

  52. You D, Jones R R, Bucksbaum P H, et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt Lett, 1993, 18: 290–292; Bensky T J, Haeffler G, Jones R R, et al. Ionization of Na Rydberg atoms by subpicosecond quarter-cycle circularly polarized pulses. Phys Rev Lett, 1997, 79: 2018–2021; Wetzels A, Gürtler A, Muller H G. The dynamics of a THz Rydberg wavepacket. Eur Phys J D, 2001, 14: 157–165; Frey M T, Dunning F B, Reinhold C O, et al. Realization of the kicked atom. Phys Rev A, 1999, 59: 1434–1443; Maeda H, Nunkaew J, Gallagher T F. Classical phase locking in adiabatic rapid passage. Phys Rev A, 2007, 75: 053417; Matos-Abiague A, Berakdar J. Ultrafast build-up of polarization in mesoscopic rings. Europhys Lett, 2005, 69: 277–283; Matos-Abiague A, Berakdar J. Photoinduced charge currents in mesoscopic rings. Phys Rev Lett, 2005, 94: 166801; Matos-Abiague A, Moskalenko A S, Berakdar J. Current Topics in Atomic, Molecular and Optical Physics. Sinha C, Bhattacharyya S, eds. London: World Scienctific, 2 2007

    Article  ADS  Google Scholar 

  53. Zhu Z G, Berakdar J. Photoinduced nonequilibrium spin and charge polarization in quantum rings. Phys Rev B, 2008, 77: 235438; Zhu Z G, Berakdar J. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings. J Phys Condens Matter, 2009, 21: 145801; Zhu Z G, Berakdar J. Photoinduced nonequilibrium spin, charge polarizations and spin-dependent current in quantum rings. Phys Status Solidi B, 2010, 247: 641–643

    Article  ADS  Google Scholar 

  54. Zhu Z G, Jia C L, Berakdar J. Proposal for fast optical control of spin dynamics in a quantum wire. Phys Rev B, 2010, 82: 235304

    Article  ADS  Google Scholar 

  55. Wang Z C, Su G, Gao S. Spin-dependent thermal and electrical transport in a spin-valve system. Phys Rev B, 2001, 63: 224419

    Article  ADS  Google Scholar 

  56. van Houten H, Beenakker C. Quantum point contacts. Phys Tod, 1996, 49: 22–27

    Article  Google Scholar 

  57. Molenkamp L W, van Houten H, Beenakker C W J. Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime. Phys Rev Lett, 1990, 65: 1052–1055; Molenkamp L W, Gravier T, van Houten H, et al. Peltier coefficient and thermal conductance of a quantum point contact. Phys Rev Lett, 1992, 68: 3765–3768

    Article  ADS  Google Scholar 

  58. Dzurak A S, Smith C G, Barnes C HW, et al. Thermoelectric signature of the excitation spectrum of a quantum dot. Phys Rev B, 1997, 55: R10197–R10200

    Article  ADS  Google Scholar 

  59. Sivan U, Imry Y. Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge. Phys Rev B, 1985, 33: 551–558

    Article  ADS  Google Scholar 

  60. Butcher P N. Thermal and electrical transport formalism for electronic microstructures with many terminals. J Phys Condens Matter, 1990, 2: 4879–4878

    Article  ADS  Google Scholar 

  61. Walter M, Walowski J, Zbarsky V, et al. Seebeck effect in magnetic tunnel junctions. Nat Mater, 2011, 10: 742–746

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Su, G. Spin manipulations through electrical and thermoelectrical transport in magnetic tunnel junctions. Sci. China Phys. Mech. Astron. 56, 166–183 (2013). https://doi.org/10.1007/s11433-012-4960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4960-x

Keywords

Navigation