Skip to main content
Log in

Radio-frequency spectroscopic measurement for pairing gap in an ultracold Fermi gas

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The study of ultracold Fermi gases has exploded a variety of experimental and theoretical research since the achievement of degenerate quantum gases in the lab, which expands the research range over atomic physics, condensed matter physics, astrophysics and particle physics. Using the Feshbach resonance, one can tune the attractive two-body interaction from weak to strong and thereby make a smooth crossover from the BCS superfluid of cooper pairs to the Bose Einstein condensate of bound molecules. In this crossover regime, the pairing effect plays a significant role in interpreting the interaction mechanism. Whenever the localized or delocalized pairing occurs at sufficiently low temperature, the single-particle energy will shift with respect to free atoms, due to the two-body or many-body interaction. Measuring the pairing gap can improve the understanding of the thermodynamics and hydrodynamics of the phase transition from the pseudogap to the superfluid, which will make an analogue to the high-temperature superconductivity in condensed matter. In this work, we will give a brief introduction to a novel radio-frequency (RF) spectroscopic measurement for pairing gap in an ultracold Fermi gas, which is currently widely used on the ultracold atomic table in the lab. In different interaction regimes of the BEC-BCS crossover, ultracold atoms are excited with a RF pulse and the characteristic behavior can be extracted from the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DeMarco B, Jin D S. Onset of Fermi degeneracy in a trapped atomic gas. Science, 1999, 285: 1703–1706

    Article  Google Scholar 

  2. Giorgini S, Pitaevskii L P, Stringari S. Theory of ultracold atomic Fermi gases. Rev Mod Phys, 2008, 80(4): 1215–1274

    Article  ADS  Google Scholar 

  3. Cooper L N. Bound electron pairs in a degenerate Fermi gas. Phys Rev, 1956, 104(4): 1189–1190; Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity. Phys Rev, 1957, 108 (5): 1175–1204

    Article  ADS  MATH  Google Scholar 

  4. Melo C A R S D. When bosons become fermions: Pairing in ultracold gases. Phys Tod, 2008, 61: 45–51

    Article  Google Scholar 

  5. Chin C, Rudolf G, Paul J, et al. Feshbach resonances in ultracold gases. Rev Mod Phys, 2010, 82(2): 1225–1286

    Article  ADS  Google Scholar 

  6. Zhang W, Sackett C A, Hulet R G. Optical detection of a Bardeen-Cooper-Schrieffer phase transition in a trapped gas of fermionic atoms. Phys Rev A, 1999, 60(1): 504–507; Weig F, Zwerger W. Optical detection of a BCS transition of lithium-6 in harmonic traps. Europhys Lett, 2000, 49: 282–288

    Article  ADS  Google Scholar 

  7. Torma P, Zoller P. Laser probing of atomic Cooper pairs. Phys Rev Lett, 2000, 85(3): 487–490

    Article  ADS  Google Scholar 

  8. Nascimbene S, Nir N, Jiang K J, et al. Collective oscillations of an imbalanced Fermi gas: Axial compression modes and polaron effective mass. Phys Rev Lett, 2009, 103(17): 170402; Bartenstein M, Altmeyer A, Riedl S, et al. Collective excitations of a degenerate gas at the BEC-BCS crossover. Phys Rev Lett, 2004, 92 (20): 203201

    Article  ADS  Google Scholar 

  9. Gupta S, Hadzibabic Z, Zwierlein M W, et al. Radio-frequency spectroscopy of ultracold fermions. Science, 2003, 300: 1723–1726

    Article  ADS  Google Scholar 

  10. Chin C, Bartenstein M, Altmeyer A, et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science, 2004, 305: 1128–1130

    Article  ADS  Google Scholar 

  11. Regal C A, Ticknor C, Bohn J L, et al. Creation of ultracold molecules from a Fermi gas of atoms. Nature, 2003, 424: 47–50

    Article  ADS  Google Scholar 

  12. Zirbel J J, Ni K K, Ospelkaus S, et al. Heteronuclear molecules in an optical dipole trap. Phys Rev A, 2008, 78(1): 013416

    Article  ADS  Google Scholar 

  13. Regal C A, Jin D S. Measurement of positive and negative scattering lengths in a Fermi gas of atoms. Phys Rev Lett, 2003, 90(23): 230404

    Article  ADS  Google Scholar 

  14. Schunck C H, Shin Y, Andre S, et al. Determination of the fermion pair size in a resonantly interacting superfluid. Nature, 2008, 454: 739–744

    Article  ADS  Google Scholar 

  15. Shin Y, Schunck C H, Schirotzek A, et al. Tomographic rf spectroscopy of a trapped Fermi gas at unitarity. Phys Rev Lett, 2007, 99(9): 090403

    Article  ADS  Google Scholar 

  16. Schirotzek A, Shin Y, Schunck C H, et al. Determination of the superfluid gap in atomic Fermi gases by quasiparticle spectroscopy. Phys Rev Lett, 2008, 101(14): 140403

    Article  ADS  Google Scholar 

  17. Larkin A I, Ovchinnikov Y N. Inhomogeneous state of superconductors. Sov Phys JETP, 1965, 20: 762–769; Fulde P, Ferrell R A. Superconductivity in a strong spin-exchange feld. Phys Rev, 1964, 135: A550–A563

    MathSciNet  Google Scholar 

  18. Liao Y, Rittner A S C, Paprotta T, et al. Spin-imbalance in a one-dimensional Fermi gas. Nature, 2010, 467(7315): 567–569

    Article  ADS  Google Scholar 

  19. Buchanan M. Mind the pseudogap. Nature, 2001, 409(6816): 8–11

    Article  ADS  Google Scholar 

  20. Schirotzek A, Cheng-Hsun W, Ariel S, et al. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys Rev Lett, 2009, 102(23): 230402

    Article  ADS  Google Scholar 

  21. Stewart J T, Gaebler J P, Jin D S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature, 2008, 454: 744–747

    Article  ADS  Google Scholar 

  22. Nascimbene S, Navon N, Jiang K J. et al. Exploring the thermodynamics of a universal Fermi gas. Nature, 2010, 463: 1057–1061

    Article  ADS  Google Scholar 

  23. Gaebler J P, Stewart J T, Drake T E, et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat Phys, 2010, 6: 569–573

    Article  Google Scholar 

  24. Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases. Rev Mod Phys, 2008, 80(3): 885–964

    Article  ADS  Google Scholar 

  25. Kohstall C, Zaccanti M, Jag M, et al. Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature, 2012, 485: 615–619; Zhang Y, Hazlett E L, Stites R W, et al. Realization of a resonant Fermi gas with a large effective range. Phys Rev Lett, 2012, 108 (4): 045304

    Article  ADS  Google Scholar 

  26. Liao R, Yi X Y, Liu W M. Tuning the tricritical point with spin-orbit coupling in polarized Fermionic condensates. Phys Rev Lett, 2012, 108(8): 080406

    Article  ADS  Google Scholar 

  27. Jiang S J, Yu X L, Liu W M. Imbalanced ultracold Fermi gas in the weakly repulsive regime: Renormalization-group approach for p-wave superfluidity. Phys Rev A, 2011, 84(6): 063608

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KaiJun Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, K., Luo, H., Li, K. et al. Radio-frequency spectroscopic measurement for pairing gap in an ultracold Fermi gas. Sci. China Phys. Mech. Astron. 56, 581–587 (2013). https://doi.org/10.1007/s11433-012-4936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4936-x

Keywords

Navigation