Skip to main content
Log in

Structural and electronic properties of atomic oxygen adsorption on Cu(111) surface: A first-principles investigation

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

By using the first-principles calculations, we have systematically investigated the adsorption of atomic oxygen on Cu(111) surface for a wide range of coverages Θ (from 0.11 to 1.00 ML) and adsorption sites. We found that the fcc-hollow site is the most stable site for oxygen adsorption. The adsorption energy decreases with increasing oxygen coverage due to the increasing repulsive interaction in the overlayer O adatoms. Except for coverage of 1.00 ML, the oxygen-induced lateral relaxations and bucklings are found in the outermost three Cu layers, and the hillock-like as well as ridge-like bucklings are also found for Θ=0.25 ML and Θ=0.75 ML as well as Θ=0.50 ML, respectively. With an increasing oxygen coverage, the work function increases and the surface dipole moment decreases. Electron transfer from the first layer Cu atoms to O adatoms indicates the O—Cu bond having some degree of ionic character, while the hybridization between O 2p and Cu 3d orbitals implies that it also has some degree of covalence character. Moreover, with the increasing oxygen coverage, more Cu 3d and O 2p states are empty thus weakening the binding of O/Cu(111) system, but increase in the PDOS at the Fermi level. This implies an enhancement in the metallic character of the O/Cu(111) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Over H, Kim Y D, Seitsonen A P, et al. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science, 2000, 287: 1474–1476

    Article  ADS  Google Scholar 

  2. Stampfl C, Ganduglia-Pirovano M V, Reuter K, et al. Catalysis and corrosion: The theoretical surface-science context. Surf Sci, 2002, 500: 368–394

    Article  ADS  Google Scholar 

  3. Niehus H. Surface reconstruction of Cu(111) upon oxygen adsorption. Surf Sci, 1983, 130: 41–49

    Article  ADS  Google Scholar 

  4. Haase J, Kuhr H J. Reconstruction and relaxation of the oxygen-covered Cu(111) surface: A sexafs study. Surf Sci, 1988, 203: L695–L699

    Article  ADS  Google Scholar 

  5. Luo B, Urban J. Structure determination of oxygen adsorbates on Cu surfaces by means of the SEELFS technique. J Phys-Condens Matter, 1991, 3: 2873–2880

    Article  ADS  Google Scholar 

  6. Matsumoto T, Bennett R A, Stone P, et al. Scanning tunneling microscopy studies of oxygen adsorption on Cu(111). Surf Sci, 2001, 471: 225–245

    Article  ADS  Google Scholar 

  7. Wiame F, Maurice V, Marcus P. Initial stages of oxidation of Cu(111). Surf Sci, 2007, 601: 1193–1204

    Article  ADS  Google Scholar 

  8. Johnston S M, Mulligan A, Dhanak V, et al. The structure of disordered chemisorbed oxygen on Cu(111). Surf Sci, 2002, 519: 57–63

    Article  ADS  Google Scholar 

  9. Toomes R L, Woodruff D P, Polcik M, et al. Is PEXAFS really PhD? Surf Sci, 2000, 445: 300–308

    Article  ADS  Google Scholar 

  10. Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on Cu(111): Thermochemistry, reaction barrier and the effect of strain. Surf Sci, 2001, 494: 131–144

    Article  ADS  Google Scholar 

  11. Soon A, Todorova M, Delley B, et al. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Phys Rev B, 2006, 73: 165424

    Article  ADS  Google Scholar 

  12. Wang Z X, Tian F H. The adsorption of O atom on Cu(100), (110), and (111) low-index and step defect surfaces. J Phys Chem B, 2003, 107: 6153–6161

    Article  Google Scholar 

  13. Duan X, Warschkow O, Soon A, et al. Density functional study of oxygen on Cu(100) and Cu(110) surfaces. Phys Rev B, 2010, 81: 075430

    Article  ADS  Google Scholar 

  14. Pang Q, Zhang Y, Zhang J M, et al. Structural and electronic properties of atomic oxygen adsorption on Pt(111): A density-functional theory study. Appl Surf Sci, 2011, 257: 3047–3054

    Article  ADS  Google Scholar 

  15. Li W X, Stampfl C, Scheffler M. Oxygen adsorption on Ag(111): A density-functional theory investigation. Phys Rev B, 2002, 65: 075407

    Article  ADS  Google Scholar 

  16. Li W X, Stampfl C, Scheffler M. Subsurface oxygen and surface oxide formation at Ag(111): A density-functional theory investigation. Phys Rev B, 2003, 67: 045408

    Article  ADS  Google Scholar 

  17. Shi H, Stampfl C. First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111). Phys Rev B, 2007, 76: 075327

    Article  ADS  Google Scholar 

  18. Landmann M, Rauls E, Schmidt W G. First-principles calculations of clean Au(110) surfaces and chemisorption of atomic oxygen. Phys Rev B, 2009, 79: 045412

    Article  ADS  Google Scholar 

  19. Ganduglia-Pirovano M V, Scheffler M. Structural and electronic properties of chemisorbed oxygen on Rh(111). Phys Rev B, 1999, 59: 15533–15543

    Article  ADS  Google Scholar 

  20. Todorova M, Reuter K, Scheffler M. Oxygen overlayers on Pd(111) studied by density functional theory. J Phys Chem B, 2004, 108: 14477–14483

    Article  Google Scholar 

  21. Sun B, Zhang P, Wang Z, et al. Atomic oxygen adsorption and incipient oxidation of the Pb(111) surface: A density-functional theory study. Phys Rev B, 2008, 78: 035421

    Article  ADS  Google Scholar 

  22. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269; Kresse G, Furthmüller J. Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50; Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  ADS  Google Scholar 

  23. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  ADS  Google Scholar 

  24. Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  ADS  Google Scholar 

  25. Neugebauer J, Scheffler M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B, 1992, 46: 16067–16080

    Article  ADS  Google Scholar 

  26. Bengtsson L. Dipole correction for surface supercell calculations. Phys Rev B, 1999, 59: 12301–12304

    Article  MathSciNet  ADS  Google Scholar 

  27. Monkhorst H J, Pack J D. Special points for Brillouin-Zone intergrations. Phys Rev B, 1976, 13: 5188–5192

    Article  MathSciNet  ADS  Google Scholar 

  28. Kittel C. Introduction to Solid State Physics. New York: Wiley, 1996

    Google Scholar 

  29. Da Silva J F, Stampfl C, Scheffler M. Converged properties of clean metal surfaces by all-electron first-principles calculations. Surf Sci, 2006, 600: 703–715

    Article  ADS  Google Scholar 

  30. Rodach T, Bohnen K, Ho K. First principles calculations of lattice relaxation at low index surfaces of Cu. Surf Sci, 1993, 286: 66–72

    Article  ADS  Google Scholar 

  31. Lindgren S A, Walldén L, Rundgren J. et al. Low-energy electron diffraction from Cu(111): Subthreshold effect and energy-dependent inner potential; surface relaxation and metric distances between spectra. Phys Rev B, 1984, 29: 576–588

    Article  ADS  Google Scholar 

  32. Tear S P, Röll K, Prutton M. A comparison of reliability (R) factors in a LEED structural analysis of the copper (111) surface. J Phys C, 1981, 14: 3297–3311

    Article  ADS  Google Scholar 

  33. Hölzl J, Schulte F, Wagner H. Work Functions of Metals, in Solid Surface Physics. Berlin: Springer, 1979. Volume 85

    Book  Google Scholar 

  34. Huber K P, Herzberg G. Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules. New York: Van Norstrand Reinhold, 1979

    Google Scholar 

  35. Materer N, Starke U, Barbieri A, et al. Reliability of detailed LEED structural analyses: Pt(111) and Pt(111)-p(2×2)-O. Surf Sci, 1995, 325: 207–222

    Article  ADS  Google Scholar 

  36. Bader R. Atoms in Molecules: A Quantum Theory. New York: Oxford University Press, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianMin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Zhang, J. & Xu, K. Structural and electronic properties of atomic oxygen adsorption on Cu(111) surface: A first-principles investigation. Sci. China Phys. Mech. Astron. 56, 573–580 (2013). https://doi.org/10.1007/s11433-012-4868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4868-5

Keywords

Navigation