Skip to main content
Log in

Implementing a topological quantum model using a cavity lattice

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum computation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded Λ-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Qi X L, Zhang S C. The quantum spin Hall effect and topological insulator. Phys Tod, 2010, 63: 33–38

    Article  ADS  Google Scholar 

  2. Hasan M Z, Kane C K. Colloquium: Topological insulator. Rev Mod Phys, 2010, 82: 3045–3067

    Article  ADS  Google Scholar 

  3. Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Mod Phys, 2008, 80: 1083–1159

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Kitaev A. Fault-tolerant quantum computation by anyons. Ann Phys, 2003, 303: 2–30

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Levin M A, Wen X G. String-net condensation: A physical mechanism for topological phases. Phys Rev B, 2005, 71: 045110

    Article  ADS  Google Scholar 

  6. Einarsson T. Fractional statistics on a torus. Phys Rev Lett, 1990, 64: 1995–1998

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Das Sarma S, Freedman M, Nayak C. Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. Phys Rev Lett, 2005, 94: 166802

    Article  ADS  Google Scholar 

  8. Kitaev A. Anyons in an exactly solved model and beyond. Ann Phys, 2006, 321: 2–111

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Feng X Y, Zhang G M, Xiang T. Topological characterization of quantum phase transitions in a spin-1/2 model. Phys Rev Lett, 2007, 98: 087204

    Article  ADS  Google Scholar 

  10. Kells G, Slingerland J K, Vala J. Description of Kitaev’s honeycomb model with toric-code stabilizers. Phys Rev B, 2009, 80: 125415

    Article  ADS  Google Scholar 

  11. Wootton J R, Lahtinen V, Wang Z, et al. Non-Abelian statistics from an Abelian model. Phys Rev A, 2008, 78: 161102

    Google Scholar 

  12. Buluta I, Nori F. Quantum simulators. Science, 2009, 326: 108–111

    Article  ADS  Google Scholar 

  13. You J Q, Shi X F, Hu X, et al. Quantum emulation of a spin system with topologically protected ground state using superconducting quantum circuits. Phys Rev B, 2010, 81: 014505

    Article  ADS  Google Scholar 

  14. Duan LM, Demler E, Lukin MD. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys Rev Lett, 2003, 91: 090402

    Article  ADS  Google Scholar 

  15. Zhang C, Scarole V W, Tewari S, et al. Anyonic braiding in optical lattices. Proc Natl Acad Sci USA, 2007, 104: 18415–18420

    Article  ADS  Google Scholar 

  16. Micheli A, Brennen G K, Zoller P. A toolbox for lattice-spin models with polar molecules. Nat Phys, 2006, 2: 341–347

    Article  Google Scholar 

  17. Jackeli G, Khaliullin G. Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys Rev Lett, 2009, 102: 017205

    Article  ADS  Google Scholar 

  18. Angelakis D G, Santos MF, Bose S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys Rev A, 2007, 76: 031805

    Article  ADS  Google Scholar 

  19. Hartmann M J, Brandáo F G S L, Plenio M B. Effective spin system in coupled microcavities. Phys Rev Lett, 2007, 99: 160501

    Article  ADS  Google Scholar 

  20. Cho J, Angelakis D G, Bose S. Simulation of high-spin Heisenberg models in coupled cavities. Phys Rev A, 2008, 78: 062338

    Article  ADS  Google Scholar 

  21. Chen Z X, Zhou Z W, Zhou X, et al. Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities. Phys Rev A, 2010, 81: 022303

    Article  ADS  Google Scholar 

  22. Cho J, Angelakis D G, Bose S. Fractional quantum Hall state in coupled cavities. Phys Rev Lett, 2008, 101: 246809

    Article  ADS  Google Scholar 

  23. Hartmann M J, Brandáo F G S L, Plenio M B. Strongly interacting polaritons in coupled arrays of cavities. Nat Phys, 2006, 2: 849–855

    Article  Google Scholar 

  24. Greentree A D, Tahan C, Cole J G, et al. Quantum phase transitions of light. Nat Phys, 2006, 2: 856–861

    Article  Google Scholar 

  25. Song B S, Noda S, Asano T, et al. Ultra-high-Q photonics double-heterostructure nanocavity. Nat Mater, 2005, 4: 207–210

    Article  ADS  Google Scholar 

  26. Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443: 671–674

    Article  ADS  Google Scholar 

  27. Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445: 896–899

    Article  ADS  Google Scholar 

  28. James D F V, Jerke J. Effective Hamiltonian theory and its applications in quantum information. Can J Phys, 2007, 625-629

  29. Spillane S M, Kippenberg T J, Vahala K J, et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys Rev A, 2005, 71: 013817

    Article  ADS  Google Scholar 

  30. Vučković J, Lončar M, Mabuchi H, et al. D Design of photonic crystal microcavities for cavity QED. Phys Rev E, 2001, 65: 016608

    Article  ADS  Google Scholar 

  31. Hood C J, Lynn T W, Doherty A C, et al. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science, 2000, 287: 1447–1453

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianQiang You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z., Yu, T., Zhang, W. et al. Implementing a topological quantum model using a cavity lattice. Sci. China Phys. Mech. Astron. 55, 1549–1556 (2012). https://doi.org/10.1007/s11433-012-4864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4864-9

Keywords

Navigation