Skip to main content
Log in

Efficient fluorescence detection of a single neutral atom with low background in a microscopic optical dipole trap

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A single cesium atom is trapped in a far-off-resonance optical dipole trap (FORT) from the magneto-optical trap (MOT) and directly imaged by using a charge-coupled device (CCD) camera. The binary single-atom steps and photon anti-bunching are observed by a photon-counting-based HBT system using fluorescence light. The average atom dwelling time in the FORT is about 9 s. To reduce the background noise in the detection procedure we employ a weak probe laser tuned to the D1 line to illuminate the single atom from the direction perpendicular to the large-numerical-aperture collimation system. The second order degree of coherence g (2)(τ)=0.12±0.02 is obtained directly from the fluorescence light of the single atom without deducting the background. The background light has been suppressed to 10 counts per 50 ms, which is much lower compared with the reported results. The measured g (2)(τ) is in good agreement with theoretical analysis. The system provides a simple and efficient method to manipulate and measure single neutral atoms, and opens a way to create an efficient controlled single-photon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Zoller P, Beth T, Binosi D, et al. Quantum information processing and communication: Strategic report on current status, visions and goals for research in Europe. Eur Phys J D, 2005, 36: 203–228

    Article  ADS  Google Scholar 

  3. Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030

    Article  ADS  Google Scholar 

  4. Hijlkema M, Weber B, Specht H P, et al. A single-photon server with just one atom. Nat Phys, 2007, 3: 253–255

    Article  Google Scholar 

  5. Specht H P, Nölleke C, Reiserer A, et al. A single-atom quantum memory. Nature, 2011, 473: 190–193

    Article  ADS  Google Scholar 

  6. Feynman R. Simulating physics with computers. Int J Theor Phys, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  7. Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers. Nature, 2010, 464: 45–53

    Article  ADS  Google Scholar 

  8. Lloyd S. Universal quantum simulators. Science, 1996, 273: 1073–1078

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. AcÍn A, Cirac J I, Lewenstein M. Entanglement percolation in quantum networks. Nat Phys, 2007, 3: 256–259

    Article  Google Scholar 

  10. Buluta I, Nori F. Quantum simulators. Science, 2009, 326: 108–111

    Article  ADS  Google Scholar 

  11. Roos C F, Chwalla M, Kim K, et al. ’Designer atoms’ for quantum metrology. Nature, 2006, 443: 316–319

    Article  ADS  Google Scholar 

  12. Banaszek K, Demkowicz-Dobrzański R, Walmsley I A. Quantum states made to measure. Nat Photon, 2009, 3: 673–676

    Article  ADS  Google Scholar 

  13. Zhang P F, Li G, Zhang Y C, et al. Light-induced atom desorption for Cesium loading of a magneto-optical trap analysis and experimental investigations. Phys Rev A, 2009, 80: 053420

    Article  ADS  Google Scholar 

  14. Schlosser N, Reymond G, Protsenko I, et al. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature, 2001, 411: 1024–1027

    Article  ADS  Google Scholar 

  15. Rosenfeld W, Hocke F, Henkel F, et al. Towards long-distance atom-photon entanglement. Phys Rev Lett, 2008, 101: 260403

    Article  ADS  Google Scholar 

  16. Karski M, Förster L, Choi J M, et al. Quantum walk in position space with single optically trapped atoms. Science, 2009, 325: 174–177

    Article  ADS  Google Scholar 

  17. Urban E, Johnson T A, Henage T, et al. Observation of Rydberg blockade between two atoms. Nat Phys, 2009, 5: 110–114

    Article  Google Scholar 

  18. Gaëtan A, Miroshnychenko Y, Wilk T, et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat Phys, 2009, 5: 115–118

    Article  Google Scholar 

  19. Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms. Rev Mod Phys, 2010, 82: 2313–2363

    Article  ADS  Google Scholar 

  20. Hood C J, Chapman M S, Lynn T W, et al. Real-time cavity QED with single atoms. Phys Rev Lett, 1998, 80: 4157–4160

    Article  ADS  Google Scholar 

  21. Wilk T, Webster S C, Kuhn A, et al. Single-atom single-photon quantum interface. Science, 2007, 317: 488–490

    Article  ADS  Google Scholar 

  22. Kubanek A, Koch M, Sames C, et al. Photon-by-photon feedback control of a single-atom trajectory. Nature, 2009, 462: 898–901

    Article  ADS  Google Scholar 

  23. Alton D J, Stern N P, Aoki T, et al. Strong interactions of single atoms and photons near a dielectric boundary. Nat Phys, 2011, 7: 159–165

    Article  Google Scholar 

  24. Zhang P F, Zhang Y C, Li G, et al. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system. Chin Phys Lett, 2011, 28: 044203

    Article  ADS  Google Scholar 

  25. Zhang P F, Guo Y Q, Li Z H, et al. Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode. Phys Rev A, 2011, 83: 031804(R)

    ADS  Google Scholar 

  26. Zhang P F, Guo Y Q, Li Z H, et al. Temperature determination of cold atoms based on single-atom countings. J Opt Soc Am B, 2011, 28: 667–670

    Article  ADS  Google Scholar 

  27. Tey M K, Chen Z L, Aljunid S A, et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nat Phys, 2008, 4: 924–927

    Article  Google Scholar 

  28. Grünzweig T, Hilliard A, McGovern M, et al. Near-deterministic preparation of a single atom in an optical microtrap. Nat Phys, 2010, 6: 951–954

    Article  Google Scholar 

  29. Gomer V, Ueberholz B, Knappe S, et al. Decoding the dynamics of a single trapped atom from photon correlations. Appl Phys B, 1998, 67: 689–697

    Article  ADS  Google Scholar 

  30. Frese D, Ueberholz B, Kuhr S, et al. Single atoms in an optical dipole trap: Towards a deterministic source of cold atoms. Phys Rev Lett, 2000, 85: 3777–3780

    Article  ADS  Google Scholar 

  31. Zuo Z, Fukusen M, Tamaki Y, et al. Single atom Rydberg excitation in a small dipole trap. Opt Express, 2009, 17: 22898–22905

    Article  ADS  Google Scholar 

  32. Nelson K D, Li X, Weiss D S. Imaging single atoms in a three-dimensional array. Nat Phys, 2007, 3: 556–560

    Article  Google Scholar 

  33. Karski M, Förster L, Choi J M, et al. Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. Phys Rev Lett, 2009, 102: 053001

    Article  ADS  Google Scholar 

  34. He X D, Xu P, Wang J, at al. High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Opt Express, 2010, 18: 13586–13592

    Article  ADS  Google Scholar 

  35. Puppe T, Schuster I, Grothe A, et al. Trapping and observing single atoms in a blue-detuned intracavity dipole trap. Phys Rev Lett, 2007, 99: 013002

    Article  ADS  Google Scholar 

  36. Li G, Zhang S, Isenhower L, et al. Crossed vortex bottle beam trap for single-atom qubits. Opt Lett, 2012, 37: 851–853

    Article  ADS  Google Scholar 

  37. Xu P, He X D, Wang J, et al. Trapping a single atom in a blue detuned optical bottle beam trap. Opt Lett, 2010, 35: 2164–2166

    Article  ADS  Google Scholar 

  38. Liu T, Geng T, Yan S B, et al. Characterizing optical dipole trap via fluorescence of trapped cesium atoms. Sci China Ser G-Phys Mech Astron, 2006, 49: 273–280

    Article  ADS  Google Scholar 

  39. He J, Yang B D, Zhang T C, et al. Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap. J Phys D-Appl Phys, 2011, 44: 135102

    Article  ADS  Google Scholar 

  40. He J, Yang B D, Zhang T C, et al. Efficient extension of the trapping lifetime of single atoms in an optical tweezer by laser cooling. Phys Scr, 2011, 84: 025302

    Article  ADS  Google Scholar 

  41. He J, Yang B D, Zhang T C, et al. Extending a release-and-recapture scheme to single atom optical tweezer for effective temperature evaluation. Chin Phys B, 2011, 20: 073701

    Article  ADS  Google Scholar 

  42. He J, Yang B D, Cheng Y J, et al. Extending the trapping lifetime of single atom in a microscopic far-off-resonance optical dipole trap. Front Phys, 2011, 6: 262–270

    Article  Google Scholar 

  43. Schlosser N, Reymond G, Grangier P. Collisional blockade in microscopic optical dipole traps. Phys Rev Lett, 2002, 89: 023005

    Article  ADS  Google Scholar 

  44. Hanbury B R, Twiss R Q. A test of a new type of stellar interferometer on sirius. Nature, 1956, 178: 1046–1048

    Article  ADS  Google Scholar 

  45. Weber M, Volz J, Saucke K, et al. Analysis of a single-atom dipole trap. Phys Rev A, 2006, 73: 043406

    Article  ADS  Google Scholar 

  46. Schrader D, Kuhr S, Alt W, et al. An optical conveyor belt for single neutral atoms. Appl Phys B, 2001, 73: 819–824

    Article  ADS  Google Scholar 

  47. Alt W. An objective lens for efficient fluorescence detection of single atoms. Optik, 2002, 113: 142–144

    Article  ADS  Google Scholar 

  48. Carmichael H J, Walls D F. A quantum-mechanical master equation treatment of the dynamical Stark effect. J Phys B-At Mol Phys, 1976, 9: 1199–1219

    Article  ADS  Google Scholar 

  49. Kimble H J, Dagenais M, Mandel L. Photon antibunching in resonance fluorescence. Phys Rev Lett, 1977, 39: 691–695

    Article  ADS  Google Scholar 

  50. Paul H. Photon antibunching. Rev Mod Phys, 1982, 54: 1061–1102

    Article  ADS  Google Scholar 

  51. Li G, Zhang T C, Li Y, et al. Photon statistics of light fields based on single-photon-counting modules. Phys Rev A, 2005, 71: 023807

    Article  ADS  Google Scholar 

  52. Li Y, Li G, Zhang Y C, et al. Effects of counting rate and resolution time on a measurement of the intensity correlation function. Phys Rev A, 2007, 76: 013829

    Article  ADS  Google Scholar 

  53. Guo Y Q, Yang R C, Li G, et al. Nonclassicality characterization in photon statistics based on binary-response single-photon detection. J Phys B-At Mol Opt Phys, 2011, 44: 205502

    Article  ADS  Google Scholar 

  54. Kurtsiefer C, Zarda P, Mayer S, et al. The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? J Mod Opt, 2001, 48: 2039–2047

    Article  ADS  Google Scholar 

  55. Pegg D T, Loudon R, Knight P L. Correlations in light emitted by three-level atoms. Phys Rev A, 1986, 33: 4085–4091

    Article  ADS  Google Scholar 

  56. Schubert M, Siemers I, Blatt R, et al. Transient internal dynamics of a multilevel ion. Phys Rev A, 1995, 52: 2994–3006

    Article  ADS  Google Scholar 

  57. Darquié B, Jones M P A, Dingjan J, et al. Controlled single-photon emission from a single trapped two-level atom. Science, 2005, 309: 454–456

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianCai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Li, G., Zhang, Y. et al. Efficient fluorescence detection of a single neutral atom with low background in a microscopic optical dipole trap. Sci. China Phys. Mech. Astron. 55, 1523–1528 (2012). https://doi.org/10.1007/s11433-012-4847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4847-x

Keywords

Navigation