Skip to main content
Log in

The organization and traffic engineering of a quantum cryptography network

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

How many users can a quantum cryptography network support when certain services are demanded? The answer to this question depends on three factors: the speed of quantum key distribution, the organization and traffic engineering of the quantum cryptography network, and the engineering of services. In this article we focus on the second factor which is lacked in the literature to our knowledge but in urgent need for constructing an optimized large-scale quantum cryptography network. In order to provide an overall understanding about a quantum cryptography network, we also briefly introduce the characteristics of quantum cryptography and service engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81: 1301–1350

    Article  ADS  Google Scholar 

  2. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  3. Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

    Article  ADS  Google Scholar 

  4. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems & Signal. New York: IEEE, 1984. 175–179

    Google Scholar 

  5. Scarani V, Acin A, Ribordy G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys Rev Lett, 2004, 92: 057901

    Article  ADS  Google Scholar 

  6. Hwang W. Quantum key distribution with high loss: Toward global secure communication. Phys Rev Lett, 2003, 91: 057901

    Article  ADS  Google Scholar 

  7. Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2003, 94: 230503

    Article  Google Scholar 

  8. Weedbrook C, Lance A M, Bowen W P, et al. Quantum cryptography without switching. Phys Rev Lett, 2004, 93: 170504

    Article  ADS  Google Scholar 

  9. Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states. Phys Rev Lett, 2002, 88: 057902

    Article  ADS  Google Scholar 

  10. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett,1991, 67: 661–663

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Wang X B, Peng C Z, Zhang J, et al. General theory of decoy-state quantum cryptography with source errors. Phys Rev A, 2008, 77: 042311

    Article  ADS  Google Scholar 

  12. Lo H K, Ma X, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  ADS  Google Scholar 

  13. Schmitt-Manderbach T, Weier H, Fürst M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys Rev Lett, 2007, 98: 010504

    Article  ADS  Google Scholar 

  14. Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-Poissionian heralded single-photon source. Phys Rev Lett, 2008, 100: 090501

    Article  ADS  Google Scholar 

  15. Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys Rev Lett, 2007, 98: 010505

    Article  ADS  Google Scholar 

  16. Liu Y, Chen T Y, Wang J, et al. Decoy-state quantum key distribution with polarized photons over 200 km. Opt Express, 2010, 18: 8587–8594

    Article  ADS  Google Scholar 

  17. Chen T Y, Wang J, Liang H, et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express, 2010, 18: 27217–27225

    Article  ADS  Google Scholar 

  18. Zhou Y Y, Zhou X J. SARG04 decoy-state quantum key distribution based on an unstable source. Optoelectron Lett, 2011, 7: 389–393

    Article  ADS  Google Scholar 

  19. Capmany J, Fernandez-Pousa C R. Optimum design for BB84 quantum key distribution in tree-type passive optical networks. J Opt Soc Am B, 2010, 27: A147–A151

    ADS  Google Scholar 

  20. Jain N, Wittmann C, Lydersen L, et al. Device calibration impacts security of quantum key distribution. Phys Rev Let, 2011, 107: 110501

    Article  ADS  Google Scholar 

  21. Cooper R B. Introduction to Queueing Theory. New York: Elsevier North Holland Inc., 1981

    Google Scholar 

  22. Engset T O. The probability calculation to determine the number of switches in automatic telephone exchanges. Telektronikk, 1991, 1–5

  23. Zeng G. Two common properties fo the Erlang-B function, Erlang-C function and Engset blocking function. Math Comput Model, 2003, 37: 1287–1296

    Article  MATH  Google Scholar 

  24. Wong E W M, Zalesky A, Zukerman M. A state-dependent approximation for the generalized Engset model. IEEE Commun Lett, 2009, 13: 962–964

    Article  Google Scholar 

  25. Cohen J W. The generalized Engset formulae. Philips Telecommun Rev, 1957, 18: 158–170

    Google Scholar 

  26. Overby H. Performance modelling of optical packet switched networks with the Engset traffic model. Opt Express, 2005, 13: 1685–1695

    Article  ADS  Google Scholar 

  27. Tanenbaum A S. Computer Networks. 4th ed. Upper Saddle River: Pearson Education Inc., 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZengBing Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Zhao, M., Zhao, Y. et al. The organization and traffic engineering of a quantum cryptography network. Sci. China Phys. Mech. Astron. 55, 1562–1570 (2012). https://doi.org/10.1007/s11433-012-4844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4844-0

Keywords

Navigation