Skip to main content
Log in

Long-range adiabatic quantum state transfer through a linear array of quantum dots

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We introduce an adiabatic long-range quantum communication proposal based on a quantum dot array. By adiabatically varying the external gate voltage applied on the system, the quantum information encoded in the electron can be transported from one end dot to another. We numerically solve the schrödinger equation for a system with a given number of quantum dots. It is shown that this scheme is a simple and efficient protocol to coherently manipulate the population transfer under suitable gate pulses. The dependence of the energy gap and the transfer time on system parameters is analyzed and shown numerically. We also investigate the adiabatic passage in a more realistic system in the presence of inevitable fabrication imperfections. This method provides guidance for future realizations of adiabatic quantum state transfer in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bose S. Quantum communication through an unmodulated spin chain. Phys Rev lett, 2003, 91: 207901

    Article  ADS  Google Scholar 

  2. Song Z, Sun C P. Quantum information storage and state transfer based on spin systems. Low Temp Phys, 2005, 31: 686–695

    Article  ADS  Google Scholar 

  3. Christandl M, Datta N, Ekert A, et al. Perfect state transfer in quantum spin networks. Phys Rev Lett, 2004, 92: 187902

    Article  MathSciNet  ADS  Google Scholar 

  4. Eckert K, Lewenstein M, Corbal R, et al. Three-level atom optics via the tunneling interaction. Phys Rev A, 2004, 70: 023606

    Article  ADS  Google Scholar 

  5. Greentree A D, Cole J H, Hamilton A R, et al. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys Rev B, 2004, 70: 235317

    Article  ADS  Google Scholar 

  6. Vitanov N V, Halfmann T, Shore B W, et al. Laser-induced polulation transfer by adiabatic passage techniques. Annu Rev Phys Chem, 2001, 52: 763–809

    Article  ADS  Google Scholar 

  7. Eckert K, Mompart J, Corbalan R, et al. Three level atom optics in dipole traps and waveguides. Opt Commun, 2006, 264: 264–270

    Article  ADS  Google Scholar 

  8. Opatrny T, Das K K. Conditions for vanishing central-well population in triple-well adiabatic transport. Phys Rev A, 2009, 79: 012113

    Article  ADS  Google Scholar 

  9. Ohshima T, Ekert A, Oi D K L, et al. Robust state transfer and rotation through a spin chain via dark passage. arXiv: quant-ph/0702019

  10. Zhang P, Xue Q K, Zhao X G, et al. Generation of spatially separated spin entanglement in a triple-quantum-dot system. Phys Rev A, 2004, 69: 042307

    Article  ADS  Google Scholar 

  11. Fabian J, Hohenester U. Entanglement distillation by adiabatic passage in coupled quantum dots. Phys Rev B, 2005, 72: 201304 (R)

    Article  ADS  Google Scholar 

  12. Graefe E M, Korsch H J, Witthaut D. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage. Phys Rev A, 2006, 73: 013617

    Article  ADS  Google Scholar 

  13. Rab M, Cole J H, Parker N G, et al. Spatial coherent transport of interacting dilute Bose gases. Phys Rev A, 2008, 77: 061602 (R)

    Article  ADS  Google Scholar 

  14. Nesterenko V O, Nikonov A N, de Souza Cruz F F, et al. STIRAP transport of Bose-Einstein condensate in triple-well trap. Laser Phys, 2009, 19: 616–624

    Article  ADS  Google Scholar 

  15. Hollenberg L C L, Greentree A D, Fowler A G, et al. Two-dimensional architectures for donor-based quantum computing. Phys Rev B, 2006, 74: 045311

    Article  ADS  Google Scholar 

  16. Greentree A D, Devitt S J, Hollenberg L C L. Quantum-information transport to multiple receivers. Phys Rev A, 2006, 73: 032319

    Article  ADS  Google Scholar 

  17. Chen B, Fan W, Xu Y. Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system. Phys Rev A, 2011, 83: 014301

    Article  ADS  Google Scholar 

  18. Cheng J, Zhou J Y. Ultrafast population transfer in three-level ? systems driven by few-cycle laser pulses. Phys Rev A, 2001, 64: 065402

    Article  ADS  Google Scholar 

  19. Goswami D. Optical pulse shaping approaches to coherent control. Phys Rep, 2003, 374: 385–481

    Article  ADS  Google Scholar 

  20. Hollenberg L C L, Greentree A D, Fowler A G, et al. Two-dimensional architectures for donor-based quantum computing. Phys Rev B, 2006, 74: 045311

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Chen or Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Shen, Q., Fan, W. et al. Long-range adiabatic quantum state transfer through a linear array of quantum dots. Sci. China Phys. Mech. Astron. 55, 1635–1640 (2012). https://doi.org/10.1007/s11433-012-4841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4841-3

Keywords

Navigation