Skip to main content
Log in

Dark energy and fate of the Universe

  • Letter
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w(z)=w 0+w a [ln(2 + z) / (1 + z) − ln 2]. Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. After constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time \({{t \simeq P\sqrt {2\left| {1 + 3w( - 1)} \right|} } \mathord{\left/ {\vphantom {{t \simeq P\sqrt {2\left| {1 + 3w( - 1)} \right|} } {\left[ {6\pi \left| {1 + w( - 1)} \right|} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {6\pi \left| {1 + w( - 1)} \right|} \right]}}\), where P is the period of a circular orbit around this system, before the big rip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Copeland E J, Sami M, Tsujikawa S. Dynamics of dark energy. Int J Mod Phys D, 2006, 15: 1753–1936; Frieman J, Turner M, Huterer D. Dark energy and the accelerating universe. Ann Rev Astron Astrophys, 2008, 46: 385–432; Li M, Li X D, Wang S, et al. Dark energy. Commun Theor Phys, 2011, 56: 525–604

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Huterer D, Starkman G. Parameterization of dark-energy properties: A principal-component approach. Phys Rev Lett, 2003, 90: 031301; Huterer D, Cooray A. Uncorrelated estimates of dark energy evolution. Phys Rev D, 2005, 71: 023506

    Article  ADS  Google Scholar 

  3. Amanullah R, Lidman C, Rubin D, et al. Spectra and light curves of six type Ia supernovae at 0.511<z<1.12 and the Union2 compilation. Astrophys J, 2010, 716: 712–738; Sullivan M, Guy J, Conley A, et al. SNLS3: Constraints on dark energy combining the Supernova Legacy Survey three year data with other probes. Astrophys J, 2011, 737: 102; Wang S, Li X D, Li M. Exploring the latest Union2 SNIa dataset by using model-independent parametrization methods. Phys Rev D, 2011, 83: 023010; Li X D, Li S, Wang S, et al. Probing cosmic acceleration by using the SNLS3 SNIa dataset. JCAP, 2011, 1107: 011

    Article  ADS  Google Scholar 

  4. Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213–224

    Article  ADS  Google Scholar 

  5. Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301

    Article  ADS  Google Scholar 

  6. Ma J Z, Zhang X. Probing the dynamics of dark energy with novel parametrizations. Phys Lett B, 2011, 699: 233–238

    Article  ADS  Google Scholar 

  7. Li H, Zhang X. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study. Phys Lett B, 2011, 703: 119–123; Li H, Zhang X. Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos. arXiv: 1202.4071

    Article  ADS  Google Scholar 

  8. Conley A, Guy J, Sullivan M, et al. Supernova constraints and systematic uncertainties from the first 3 years of the Supernova Legacy Survey. Astrophys J Suppl, 2011, 192: 1

    Article  ADS  Google Scholar 

  9. Komatsu E, Smith K M, Dunkley J, et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18

    Article  ADS  Google Scholar 

  10. Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample. Mon Not R Astron Soc, 2010, 401: 2148–2168

    Article  ADS  Google Scholar 

  11. Riess A G, Macri L, Casertano S, et al. A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys J, 2011, 730: 119

    Article  ADS  Google Scholar 

  12. Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys Rev D, 2002, 66: 103511

    Article  ADS  Google Scholar 

  13. Caldwell R R, Kamionkowski M, Weinberg N N. Phantom energy: Dark energy with w<−1 causes a cosmic doomsday. Phys Rev Lett, 2003, 91: 071301

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Additional information

Contributed by LI Miao (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wang, S., Huang, Q. et al. Dark energy and fate of the Universe. Sci. China Phys. Mech. Astron. 55, 1330–1334 (2012). https://doi.org/10.1007/s11433-012-4748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4748-z

Keywords

Navigation