Skip to main content
Log in

Effects of the energy equation in studies of limit-cycle behaviors of black hole accretion disks

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The inconsistency of the energy equation used in the literature is pointed out and a new consistent energy equation is given. With this new energy equation, calculations are made for the limit-cycle behaviors of thermally unstable accretion disks around black holes. From the comparison of our numerical results with those obtained using the inconsistent energy equation, it is found that the inconsistent energy equation undervalues the temperature and overvalues the effective optical depth when the accreted gas becomes effectively optically thin. Thus, it is dangerous if the inconsistent energy equation is used in the studies of very hot and optically thin accretion flows such as advection-dominated accretion flows (ADAFs), and our new energy equation is likely to be a better alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shakura, N I, Sunyaev R A. Black holes in binary systems. Observational appearance. Astron Astrophys, 1973, 24: 335–337

    Google Scholar 

  2. Kato S, Fukue J, Mineshige S. Black-hole Accretion Disks. Kyoto: Kyoto University Press, 1998

    Google Scholar 

  3. Chen X, Abramowicz M A, Lasota J-P, et al. Unified description of accretion flows around black holes. Astrophys J, 1995, 443: L61–L64

    Article  ADS  Google Scholar 

  4. Szuszkiewicz E, Miller J C. Non-linear evolution of thermally unstable slim accretion discs with a diffusive form of viscosity. Mon Not R Astron Soc, 2001, 328: 36–44

    Article  ADS  Google Scholar 

  5. Szuszkiewicz E, Miller J C. On the thermal stability of transonic accretion discs. Mon Not R Astron Soc, 1997, 287: 165–179

    ADS  Google Scholar 

  6. Szuszkiewicz E, Miller J C. Limit-cycle behaviour of thermally unstable accretion flows on to black holes. Mon Not R Astron Soc, 1998, 298: 888–896

    Article  ADS  Google Scholar 

  7. Honma F, Matsumoto R, Kato S. Nonlinear oscillations of thermally unstable slim accretion disks around a neutron star or a black hole. Publ Astron Soc Japan, 1991, 43: 147–168

    ADS  Google Scholar 

  8. Teresi V, Molteni D, Toscano E. SPH simulations of Shakura-Sunyaev instability at intermediate accretion rates. Mon Not R Astron Soc, 2004, 348: 361–367

    Article  ADS  Google Scholar 

  9. Teresi V, Molteni D, Toscano E. Ab initio simulations of accretion disc instability. Mon Not R Astron Soc, 2004, 351: 297–310

    Article  ADS  Google Scholar 

  10. Mayer M, Pringle J E. Variability of black hole accretion discs: The cool, thermal disc component. Mon Not R Astron Soc, 2006, 368: 379–396

    ADS  Google Scholar 

  11. Nayakshin S, Rappaport S, Melia F. Time-dependent disk models for the microquasar GRS 1915+105. Astrophys J, 2000, 535: 798–814

    Article  ADS  Google Scholar 

  12. Janiuk A, Czerny B, Siemiginowska A. Radiation pressure instability driven variability in the accretion black holes. Astrophys J, 2002, 576: 908–922

    Article  ADS  Google Scholar 

  13. Watarai K, Mineshige S. Model for relaxation oscillations of a luminous accretion disk in GRS 1915+105: Variable inner edge. Astrophys J, 2003, 596: 421–428

    Article  ADS  Google Scholar 

  14. Ohsuga K. Two-dimensional radiation-hydrodynamic model for limit-cycle oscillations of luminous accretion disks. Astrophys J, 2006, 640: 923–928

    Article  ADS  Google Scholar 

  15. Kawata A, Watarai K, Fukue J. How do we see a relativistic accretion disk during a thermal instability. Publ Astron Soc Jpn, 2006, 58: 477–484

    ADS  Google Scholar 

  16. Narayan R, Mahadevan R, Quataert E. Theory of black hole accretion disks. Cambridge: Cambridge Univ Press, 1998. 148

    Google Scholar 

  17. Takeuchi M, Mineshige S. A model for the X-ray transition in galactic black hole candidate objects. Astrophys J, 1998, 505: L19–L22

    Article  ADS  Google Scholar 

  18. Li S L, Xue L, Lu J F. Studies of thermally unstable accretion disks around black holes with adaptive pseudospectral domain decomposition. I. Limit-cycle behavior in the case of moderate viscosity. Astrophys J, 2007, 666: 368–377

    Article  ADS  Google Scholar 

  19. Huré J M, Collin-Souffrin S, Le Bourlot J, et al. Structure of the outer regions of accretion discs in Active Galactic Nuclei. Astron Astrophys, 1994, 290: 19–33

    ADS  Google Scholar 

  20. Abramowicz M A, Czerny B, Lasota J-P, et al. Slim accretion disks. Astrophys J, 1988, 332: 646–658

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JuFu Lu.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2009CB824800), the National Natural Science Foundation of China (Grant Nos. 10673009 and 10833002), and the Natural Science Foundation of Fujian Province of China (Grant No. V0750001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Lu, J. Effects of the energy equation in studies of limit-cycle behaviors of black hole accretion disks. Sci. China Ser. G-Phys. Mech. Astron. 52, 954–959 (2009). https://doi.org/10.1007/s11433-009-0093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0093-2

Keywords

Navigation