Skip to main content
Log in

Abstract

Pd80+x Si20−x (x = 0, 1, and 2) binary metallic glasses with the diameter ranging from 7 to 8 mm were prepared by a combination of fluxing and water quenching or air cooling. Thermal analysis results show that with increasing Si content, the glass transition temperature T g, the initial crystallization temperature T x and the onset crystallization temperature T p of Pd-Si binary glassy alloys increase. Moreover, the supercooled liquid region reaches 61 K. It indicates that Pd-Si binary alloys possess large glass forming ability, which can be greatly improved by fluxing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960, 187: 869–870

    Article  ADS  Google Scholar 

  2. Turnbull D. Under what conditions can a glass be formed? Contemp Phys, 1969, 10: 473–488

    Article  ADS  Google Scholar 

  3. Greer A L. Metallic glasses. Science, 1995, 267: 1947–1953

    Article  ADS  Google Scholar 

  4. Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fluxing. Appl Phys Lett, 1984, 45(6): 615–616

    Article  ADS  Google Scholar 

  5. Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater Trans JIM, 1989, 30(12): 965–972

    Google Scholar 

  6. Kim S G, Inoue A, Masumoto T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Mater Trans JIM, 1990, 31(11): 929–934

    Google Scholar 

  7. Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater Trans JIM, 1990, 31(3): 177–183

    Google Scholar 

  8. Inoue A. High-strength bulk amorphous-alloys with low critical cooling rates. Mater Trans JIM, 1995, 36: 866–875

    Google Scholar 

  9. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48: 279–306

    Article  Google Scholar 

  10. Johnson W L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull, 1999, 24: 42–56

    Google Scholar 

  11. Wang W H, Dong C, Sheck C H. Bulk metallic glasses. Mater Sci Eng, 2004, R44: 24–89

    Google Scholar 

  12. Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system. Appl Phys Lett, 2004, 84: 4029–4031

    Article  ADS  Google Scholar 

  13. Xu D, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100−x Zrx (x = 34, 36, 38.2, 40 at%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater, 2004, 52: 2621–2624

    Article  Google Scholar 

  14. Tang M B, Zhao D Q, Pan M X, et al. Binary Cu-Zr bulk metallic glass. Chin Phys Lett, 2004, 21: 901–903

    Article  ADS  Google Scholar 

  15. Yao K F, Ruan F. Pd-Si binary bulk metallic glass prepared at low cooling rate. Chin Phys Lett, 2005, 22: 1481–1483

    Article  ADS  Google Scholar 

  16. Pu J, Wang J F, Xiao J Z, et al. Formation of Pd82Si18 bulk metallic glass and its crystallization. J Huazhong Univ Sci Tech, 2003, 31: 69–72

    Google Scholar 

  17. Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass. Appl Phys Lett, 2006, 88: 122106

    Google Scholar 

  18. Xia L, Li W H, Fang S S, et al. Binary Ni-Nb bulk metallic glasses. J Appl Phys, 2006, 99: 026103

    Google Scholar 

  19. Wang J G, Choi B W, Nieh T G, et al. Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy. J Mater Res, 2000, 15(3): 798–807

    Article  ADS  Google Scholar 

  20. Greer A L, Castellero A, Madge S V, et al. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater Sci Eng A, 2004, 375–377: 1182–1185

    Google Scholar 

  21. Schuh C A, Nieh T G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater, 2005, 51: 87–99

    Article  Google Scholar 

  22. Greer A L, Walker I T. Transformations in primary crystallites in (Fe,Ni)-based metallic glasses. Mater Sci Forum, 2002, 386–388: 77–88

    Article  Google Scholar 

  23. Tang C G, Li Y, Zeng K Y. Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Mater Sci Eng A, 2004, 384(1–2): 215–223

    Google Scholar 

  24. Lu Z P, Liu C T. Glass forming criterion for various glass systems. Phys Rev Lett, 2003, 91: 115505

    Google Scholar 

  25. Inoue A, Nishiyama N. Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Mater Sci Eng, 1997, A226–228: 401–405

    Google Scholar 

  26. Chen N, Yao K F, Ruan F. Influence of flux treatment on the glass forming ability of Pd-Si binary alloy. J Univ Sci Tech Beijing, 2007, 14(suppl 1): 4–7

    Google Scholar 

  27. Chen N, Yao K F, Ruan F. The influence of cooling rate on the hardness of Pd-Si binary glassy alloys. Mater Sci Eng, 2007, A473: 274–278

    Google Scholar 

  28. Yao K F, Zhang C Q. Fe-based bulk metallic glass with high plasticity. Appl Phys Lett, 2006, 90: 061901

    Google Scholar 

  29. Hong S Y, Guo W H, Kui H W. Metastable liquid miscibility gap in Pd-Si and its glass forming ability (III). J Mater Res, 1999, 14: 3668–3672

    Article  ADS  Google Scholar 

  30. Lee K L, Kui H W. Phase separation in undercooled molten Pd80Si20 (I). J Mater Res, 1999, 14: 3653–3662

    Article  ADS  Google Scholar 

  31. Lee K L, Kui H W. Crystallization of undercooled liquid spinodals (II). J Mater Res, 1999, 14: 3663–3667

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeFu Yao.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2007CB613905) and the National Natural Science Foundation of China (Grant Nos. 50671050 and 50431030)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, K., Chen, N. Pd-Si binary bulk metallic glass. Sci. China Ser. G-Phys. Mech. As 51, 414–420 (2008). https://doi.org/10.1007/s11433-008-0051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0051-4

Keywords

Navigation