Skip to main content
Log in

Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach

基于电路模型的人工电磁材料中损耗和耦合对谐振特性影响的研究

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this work we establish an equivalent circuit model to analyze the resonace of the metamaterial considering the loss of the unit cell and coupling effect between them. From this model, we find that metamaterial can be divided into three categories: weak, critical and strong couplings, depending on the values of the loss and coupling strength, where the different resonant properties are presented. The physical reason of the division is whether the loss in each unit cell can be offset by energy coupling from the adjunct unit cells. Full-wave electromagnetic simulations have also been carried out to verify the equivalent circuit analysis. Our circuit analysis provides a simple and effective way to understand the coupling of the metamaterial and gives guidance for the analysis and design of the metamaterial.

概要

创新点

人工电磁材料的结构之间存在电磁耦合, 特别是结构距离很近的时候. 这种电磁耦合以及结构的损耗对其谐振特性起很重要的影响. 本文建立了人工电磁材料的等效电路模型, 在模型中分别考虑了电场耦合和磁场耦合以及结构损耗, 并根据耦合强度和损耗值的关系, 把人工电磁材料中的谐振特性分成三类: 强耦合, 临界耦合和弱耦合. 通过对等效电路模型的分析, 得出了人工电磁材料的谐振频率的劈裂和这三类耦合之间的关系, 并从能量的角度解释了其物理机理.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tao H, Padilla WJ, Zhang X, et al. Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE J Sel Top Quantum Electron, 2010, 99: 1–10

    Google Scholar 

  2. Liu Y, Zhang X. Metamaterials: A new frontier of science and technology. Chem Soc Rev, 2011, 40: 2494–2507

    Article  Google Scholar 

  3. Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and µ. Sov Phys Usp, 1968, 10: 509–514

    Article  Google Scholar 

  4. Christos A, Nasim M E, Francesco M, et al. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials, Opt Express, 2013, 21: 15037–15047

    Article  Google Scholar 

  5. Xu T, Amit A, Maxim A, et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 2013, 497: 470–474

    Article  Google Scholar 

  6. Alexander P, Ivan I, Pavel B, et al. Hyperbolic metamaterials. Nat Photon, 2013, 7: 948–957

    Article  Google Scholar 

  7. Wang Z B, Feng Y J, Zhao J M, et al. Analog study of near-field focusing and subwavelength imaging with nonlinear transmission-line metamaterial. Sci China Inf Sci, 2013, 56: 120407(8)

    Google Scholar 

  8. Xu S, Wang Y, Zhang B L, et al. Invisibility cloaks from forward design to inverse design. Sci China Inf Sci, 2013, 56: 120408(11)

    MathSciNet  Google Scholar 

  9. Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977–980

    Article  Google Scholar 

  10. Shao J, Chen P, Wu R X, et al. Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial. Appl Phys Lett, 2013, 102: 034106

    Article  Google Scholar 

  11. Jin B B, Wu J B, Zhang C H, et al. Enhanced slow light in superconducting electromagnetically induced transparency metamaterials. Supercond Sci Technol, 2013, 26: 074004

    Article  Google Scholar 

  12. Meng C, Peng R W, Fan R H, et al. Making structured metals transparent for broadband electromagnetic waves. Sci China Inf Sci, 2013, 56: 120409(9)

    Google Scholar 

  13. Yanchuk B L, Zheludev N I, Halas N J, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010, 9: 707–715

    Article  Google Scholar 

  14. Cao W, Singh R, Naib I A I A, et al. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett, 2012, 37: 3366–3368

    Article  Google Scholar 

  15. Husu H, Canfield B K, Laukkanen J, et al. Chiral coupling in gold nanodimers. Appl Phys Lett, 2008, 93: 183115

    Article  Google Scholar 

  16. Li Z F, Caglayan H, Colak E, et al. Coupling effect between two adjacent chiral structure layers. Opt Express, 2010, 9: 5375–5377

    Article  Google Scholar 

  17. Huang C, Feng Y J, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys Rev B, 2012, 85: 195131

    Article  Google Scholar 

  18. Liu H, Cao J X, Zhu S N, et al. Lagrange model for the chiral optical properties of stereometamaterials. Phy Rev B, 2010, 81: 241403

    Article  Google Scholar 

  19. Liu N, Liu H, Zhu S N, et al. Stereometamaterials. Nat Photon, 2009, 3: 157–162

    Article  Google Scholar 

  20. Liu H, Genov D A, Wu D M, et al. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys Rev B, 2007, 76: 073101

    Article  Google Scholar 

  21. Liu M, Chen P. Study on resonance modes separation of metallic split ring resonator pair at microwave frequencies (in Chinese). J Microwaves, 2010, 27: 1, 71–74

    Google Scholar 

  22. Xiong X, Sun W H, Bao Y J, et al. Switching the electric and magnetic responses in a metamaterial. Phys Rev B, 2009, 80: 201105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BiaoBing Jin or YiJun Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, J., Liang, L. et al. Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach. Sci. China Inf. Sci. 57, 1–8 (2014). https://doi.org/10.1007/s11432-014-5184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5184-7

Keywords

关键词

Navigation