Skip to main content
Log in

Improved non-negative tensor Tucker decomposition algorithm for interference hyper-spectral image compression

改进的非负张量Tucker分解在干涉高光谱图像压缩的应用

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The compression method, first proposed in 2012, is based on the non-negative tensor decomposition for interference hyper-spectral image data. As a tensor is generated by a huge amount of interference hyper-spectral images, the multiplicative update algorithm is made extremely complicated, and even unfeasible. To reduce the computational cost and speed up the convergence, this paper, based on the characteristics of interference hyper-spectral images, develops a new algorithm using different down-sampling factors for different non-negative wavelet sub-band tensors. The experimental results showed that this algorithm could significantly shorten the running time, while maintaining a good compression performance compared with the conventional methods.

摘要

创新点

基于非负张量分解的干涉高光谱图像压缩方法已经在2012年被提出, 但干涉高光谱图像的数据量巨大, 所形成的数据张量会非常大, 这会导致乘性迭代MU(Multiplicative Update)算法需要较高的计算复杂度, 甚至使得算法本身不可行。 为了减少计算代价和加快收敛速度, 本文针对干涉高光谱图像的光谱特性对不同的非负小波子带张量采用不同的下采样因子分别执行快速非负张量Tucker分解来实现数据压缩。 试验结果证实了基于下采样的多尺度非负张量逼近可以大大降低运行时间, 同时保持与未采样情形相当的压缩性能, 有效的提高了干涉高光谱图像压缩的实时性需求。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu X L, Zhai G T, Yang X K. Adaptive sequential prediction of multidimensional signals with applications to lossless image coding. IEEE Trans Image Process, 2011, 20: 36–42

    Article  MathSciNet  Google Scholar 

  2. Zhu W, Du Q, Fowler J E. Multitemporal hyperspectral image compression. IEEE Geosci Remote S, 2011, 8: 416–420

    Article  Google Scholar 

  3. Chopra G, Pal A K. An improved image compression algorithm using binary space partition scheme and geometric wavelets. IEEE Trans Image Process, 2011, 20: 270–275

    Article  MathSciNet  Google Scholar 

  4. Li B, Yang R, Jiang H X. Remote-sensing image compression using two-dimensional oriented wavelet transform. IEEE Geosci Remote S, 2011, 49: 236–250

    Article  Google Scholar 

  5. Jiao L C, Wang L, Wu J J. Shape adaptive reversible integer lapped transform for lossy-to-lossless ROI coding of remote sensing two-dimensional images. IEEE Geosci Remote S, 2011, 8: 326–330

    Article  Google Scholar 

  6. Murthy C R, Duni E R, Rao B D. High-rate vector quantization for noisy channels with applications to wideband speech spectrum compression. IEEE Trans Signal Process, 2011, 59: 5390–5403

    Article  MathSciNet  Google Scholar 

  7. Garcia V F, Munoz M J, Zortea M. On the impact of lossy compression on hyperspectral image classification and unmixing. IEEE Geosci Remote S, 2011, 8: 253–257

    Article  Google Scholar 

  8. Deng C W, Lin W S, Lee B S. Robust image coding based upon compressive sensing. IEEE Trans Multimedia, 2012, 14: 278–290

    Article  Google Scholar 

  9. Han J N, Saxena A, Melkote V. Jointly optimized spatial prediction and block transform for video and image coding. IEEE Trans Image Process, 2012, 21: 1874–1884

    Article  MathSciNet  Google Scholar 

  10. Vassilis K, Georgios B G. From sparse signals to sparse residuals for robust sensing. IEEE Trans Signal Process, 2011, 59: 3355–3368

    Article  MathSciNet  Google Scholar 

  11. Du L M, Li J, Jin G. Compression of interference hyperspectral image based on FHALS-NTD. Spectroscopy, 2012, 32: 3155–3160

    Google Scholar 

  12. Wang H C, Wu Q, Shi L. Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Trans Graphic, 2005, 24: 527–535

    Article  MATH  Google Scholar 

  13. Wu Q, Xia T, Chen C. Hierarchical tensor approximation of multidimensional visual data. IEEE Trans Vis Comput Gr, 2008, 14: 186–199

    Article  Google Scholar 

  14. Wang C L, Li Y S, Liu X B. Spatial domain display for interference image dataset. Spectroscopy, 2011, 31: 3158–3162

    Google Scholar 

  15. Wen J, Ma C W, Shui P L. A 3d non-linear orientation prediction wavelet transform for interference hyperspectral images compression. Opt Commun, 2011, 284: 1770–1777

    Article  Google Scholar 

  16. Ma J, Wu C K. Optical design and data processing of LASIS. IEIC Tech Report. Xi’an, China, 2006. 279–283

    Google Scholar 

  17. Wu J, Wu Z, Wu C. Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm. Proc SPIE, 2005: 484–493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Zhao, J., Ma, C. et al. Improved non-negative tensor Tucker decomposition algorithm for interference hyper-spectral image compression. Sci. China Inf. Sci. 58, 1–9 (2015). https://doi.org/10.1007/s11432-014-5165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5165-x

Keywords

关键词

Navigation