Skip to main content
Log in

Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartigan J A. Clustering Algorithms. New York: Wiley, 1975

    MATH  Google Scholar 

  2. Yue S H, Wu T, Cui L J, et al. Clustering mechanism for electric tomography imaging. Sci China Inf Sci, 2012, 55: 2849–2864

    Article  MathSciNet  Google Scholar 

  3. Jain A K. Data clustering: 50 years beyond k-means. Pattern Recogn Lett, 2010, 31: 651–666

    Article  Google Scholar 

  4. Xu R, Wunsch II D. Survey of clustering algorithms. IEEE Trans Neural Networ, 2005, 16: 645–678

    Article  Google Scholar 

  5. Hu C X, Liu Y M, Li G, et al. Improved FOCUSS method for reconstruction of cluster structured sparse signals in radar imaging. Sci China Ser F-Inf Sci, 2012, 55: 1776–1788

    Article  MathSciNet  MATH  Google Scholar 

  6. Ni W W, Chong Z H. Clustering-oriented privacy-preserving data publishing. Knowl-based Syst, 2012, 35: 264–270

    Article  Google Scholar 

  7. Dunn C. A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J Cybern, 1974, 3: 32–57

    Article  MathSciNet  Google Scholar 

  8. Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, 1981

    Book  MATH  Google Scholar 

  9. Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Trans Fuzzy Syst, 1995, 3: 370–379

    Article  Google Scholar 

  10. Hall L L, Bensaid A M, Clarke L P. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Networ, 2002, 3: 672–682

    Article  Google Scholar 

  11. Cannon R L, Dave J V, Bezdek J C. Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans Pattern Anal, 1986, PAMI-8: 248–255

    Article  Google Scholar 

  12. Shen Y, Shi H, Zhang J Q. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of the 18th Instrumentation and Measurement Technology Conference, IEEE Computer Society 2001. 1430–1433

    Google Scholar 

  13. Bezdek J C. A physical interpretation of fuzzy ISODATA. IEEE Trans Syst Man Cy B, 1976, SMC-6: 387–390

    MathSciNet  Google Scholar 

  14. Bezdek J C, Hathaway R. Convergence theory for fuzzy c-means: Counterexamples and repairs. IEEE Trans Syst Man Cy B, 1987, 17: 873–877

    Article  MATH  Google Scholar 

  15. Chan K P, Cheung Y S. Clustering of clusters. Pattern Recogn, 1992, 25: 211–217

    Article  Google Scholar 

  16. Choe H, Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society 1992. 349–354

    Chapter  Google Scholar 

  17. Ozkan I, Turksen I B, Entropy assessment for type-2 fuzziness. In: Proceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society 2004. 1111–1115

    Google Scholar 

  18. Ozkan I, Turksen I B. Upper and lower values for the level of fuzziness in FCM. Inform Sci, 2007, 177: 5143–5152

    Article  MATH  Google Scholar 

  19. Wu K L. Analysis of parameter selections for fuzzy C-means. Pattern Recogn, 2012, 45: 407–415

    Article  MATH  Google Scholar 

  20. Huang M, Xia Z, Wang H, et al. The range of the value for the fuzzifier of the fuzzy c-means algorithm. Pattern Recogn Lett, 2012, 33: 2280–2284

    Article  Google Scholar 

  21. Hwang C, Rhee F C H. Uncertain fuzzy clustering: Interval type-2 fuzzy approach to c-means. IEEE Trans Fuzzy Syst, 2007, 15: 107–120

    Article  Google Scholar 

  22. Yu J. On the fuzziness index of the FCM algorithms. Chin J Comput, 2003, 26: 965–973

    Google Scholar 

  23. Yu J, Cheng Q, Huang H. Analysis of the weighting exponent in the FCM. IEEE Trans Syst Man Cy B, 2004, 34: 634–639

    Article  Google Scholar 

  24. Fadili M J, Ruan S, Bloyet D, et al. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med Image Anal, 2001, 5: 55–67

    Article  Google Scholar 

  25. Devijver P A, Kittler J. Pattern Recognition: A Statistical Approach. London: Prentice-Hall, 1982

    MATH  Google Scholar 

  26. Hoppner F, Klawon F, Kruse R, et al. Fuzzy Cluster Analysis: Methods for Classifications Data Analysis and Image Recognition. New York: Wiley, 1999

    Google Scholar 

  27. Kim M, Ramakrishna R S. New indices for cluster validity assessment. Pattern Recogn Lett, 2005, 26: 2353–2363

    Article  Google Scholar 

  28. Wang W, Zhang Y. On fuzzy cluster validity indices. Fuzzy Set Syst, 2007, 158: 2095–2117

    Article  MATH  Google Scholar 

  29. Xie X L, Beni G, A validity measure for fuzzy clustering. IEEE Trans Pattern Anal, 1991, 13: 841–847

    Article  Google Scholar 

  30. Kwon S H. Cluster validity index for fuzzy clustering. Electron Lett, 1998, 34: 2176–2177

    Article  Google Scholar 

  31. Tang Y, Sun F, Sun Z. Improved validation index for fuzzy clustering. In: Proceedings of the 2005 American Control Conference, IEEE Computer Society, 2005. 1120–1125

    Google Scholar 

  32. Bensaid A M, Hall L O, Bezdek J C, et al. Validity-guided (Re)clustering with applications to image segmentation. IEEE Trans Fuzzy Syst, 1996, 4: 112–123

    Article  Google Scholar 

  33. Bezdek J C, Ehrlish R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci-UK, 1984, 10: 191–203

    Article  Google Scholar 

  34. Frank A, Asuncion A. UCI Machine Learning Repository. California: University of California, 2010

    Google Scholar 

  35. Zhang Y J, Wang W N, Zhang X N, et al. A cluster validity index for fuzzy clustering. Info Sci, 2008, 178: 1205–1218

    Article  MATH  Google Scholar 

  36. Jegatha Deborah L, Baskaran R, Kannan A. A survey on internal validity measure for cluster validation. Int J Computer Sci Eng Surv, 2010, 1: 85–102

    Article  Google Scholar 

  37. Guerra L, Robles V, Bielza C. et al. A comparison of clustering quality indices using outliers and noise. Intell Data Anal, 2012, 16: 703–715

    Google Scholar 

  38. Arbelaitz O, Gurrutxaga I, Muguerza J, et al. An extensive comparative study of cluster validity indices. Pattern Recogn, 2013, 46: 243–256

    Article  Google Scholar 

  39. Gurrutxaga I, Muguerza J, Arbelaitz O, et al. Towards a standard methodology to evaluate internal cluster validity indices. Pattern Recogn Lett, 2011, 32: 505–515

    Article  Google Scholar 

  40. Zalik K R, Zalik B. Validity index for clusters of different sizes and densities. Pattern Recogn Lett, 2011, 32: 221–234

    Article  Google Scholar 

  41. Zalik K R. Cluster validity index for estimation of fuzzy clusters of different sizes and densities. Pattern Recogn, 2010, 43: 3374–3390

    Article  MATH  Google Scholar 

  42. Geva A B, Steinberg Y, Bruckmair S, et al. A comparison of cluster validity criteria for a mixture of normal distributed data. Pattern Recogn Lett, 2000, 21: 511–529

    Article  Google Scholar 

  43. Dimitriadou E, Dolňicar S, Weingessel A. An examination of indexes for determining the number of clusters in binary data sets. Psychometrika, 2002, 67: 137–159

    Article  MathSciNet  Google Scholar 

  44. Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal, 2002, 24: 1650–1654

    Article  Google Scholar 

  45. Pal N R, Bezdek J C. Correction to on cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst, 1997, 5: 152–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KaiLe Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Fu, C. & Yang, S. Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation. Sci. China Inf. Sci. 57, 1–8 (2014). https://doi.org/10.1007/s11432-014-5146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5146-0

Keywords

Navigation