Skip to main content
Log in

Anomalous transport of light in photonic crystal

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Photonic crystal (PC) offers a powerful means to mold the flow of light and manipulate lightmatter interaction at subwavelength scale. In this paper, we review some recent theoretical and experimental work in our group on design and fabrication of microwave and infrared PC structures with the capability to achieve various anomalous transport behaviors of light. We discuss several microwave 2D PC and quasi-crystal structures that exhibit nearly isotropic equi-frequency surface (EFS) contours with effective refractive index equal to −1. In these structures, we can observe negative refraction induced focusing of microwave against a flat slab lens in non-near field regions. In comparison, if PC structures have anisotropic EFS contours in the lowest photonic band, only near-field focusing is expected. We move forward to high frequency infrared band and exploreremarkable dispersion properties of silicon 2D PC slab to achieve broad-band negative refraction and self-collimation transport of infrared light beam. We also explore the possibility to realize negative refraction and flat-lens focusing of light in 3D PC made from inverse opal. These studies show that PCs can offer a powerful route to manipulate various anomalous transport of light via photonic band gap and band structure engineering, which can be harnessed to build a wide variety of integrated optical devices for large-scale optical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Z Y. Nanophotonics in China: overviews and highlights. Front Phys, 2012, 7: 601–631

    Article  Google Scholar 

  2. Veselago V G. Electrodynamics of substances with simultaneously negative values of ∈ and µ. Sov Phys Uspekhi, 1968, 10: 509–514

    Article  Google Scholar 

  3. Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76: 4773–4776

    Article  Google Scholar 

  4. Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons in thin-wire structures. J Phys-Condens Mat, 1998, 10: 4785–4809

    Article  Google Scholar 

  5. Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966–3969

    Article  Google Scholar 

  6. Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292: 77–79

    Article  Google Scholar 

  7. Leonhardt U. Optical conformal mapping. Science, 2006, 312: 1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  8. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun, 2010, 1: 21

    Google Scholar 

  10. Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat Commun, 2010, 1: 124

    Article  Google Scholar 

  11. Yang F, Mei Z L, Jin T Y, et al. dc electric invisibility cloak. Phys Rev Lett, 2012, 109: 053902

    Article  Google Scholar 

  12. Cheng Q, Jiang W X, Cui T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys Rev Lett, 2012, 108: 213903

    Article  Google Scholar 

  13. Lai Y, Ng J, Chen H, et al. Illusion optics: The optical transformation of an object into another object. Phys Rev Lett, 2009, 102: 253902

    Article  Google Scholar 

  14. Lai Y, Chen H, Zhang Z Q, et al. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett, 2009, 102: 093901

    Article  Google Scholar 

  15. Huang X Q, Lai Y, Hang Z H, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zerorefractive-index materials. Nat Mat, 2011, 10: 582–586

    Article  Google Scholar 

  16. Li J, Zhou L, Chan C T, et al. Photonic band gap from a stack of positive and negative index materials. Phys Rev Lett, 2003, 90: 083901

    Article  Google Scholar 

  17. Jiang H T, Chen H, Li H Q, et al. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl Phys Lett, 2003, 83: 5386–5388

    Article  Google Scholar 

  18. Jiang H T, Chen H, Li H Q, et al. Properties of one-dimensional photonic crystals containing single-negative materials. Phys Rev E, 2004, 69: 066607

    Article  Google Scholar 

  19. Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 063908

    Article  Google Scholar 

  20. Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mat, 2012, 11: 426–431

    Article  Google Scholar 

  21. Li X, Liang Z X, Liu X H, et al. All-angle zero reflection at metamaterial surfaces. Appl Phys Lett, 2008, 93: 171111

    Article  Google Scholar 

  22. Wu C, Li H Q, Wei Z Y, et al. Theory and experimental realization of negative refraction in a metallic helix array. Phys Rev Lett, 2010, 105: 247401

    Article  Google Scholar 

  23. Wu C, Li H Q, Yu X, et al. Metallic helix array as a broadband wave plate. Phys Rev Lett, 2011, 107: 177401

    Article  Google Scholar 

  24. Li T, Wang S M, Cao J X, et al. Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl Phys Lett, 2010, 97: 261113

    Article  Google Scholar 

  25. Liu N, Liu H, Zhu S N, et al. Stereometamaterials. Nat Photonics, 2009, 3: 157–162

    Article  Google Scholar 

  26. Fan R H, Peng R W, Huang X R, et al. Transparent metals for ultrabroadband electromagnetic waves. Adv Mater, 2012, 24: 1980–1986

    Article  Google Scholar 

  27. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett, 1987, 58: 2059–2062

    Article  Google Scholar 

  28. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett, 1987, 58: 2486–2489

    Article  Google Scholar 

  29. Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: Putting a new twist on light. Nature, 1997, 386: 143–149

    Article  Google Scholar 

  30. Notomi M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys Rev B, 2000, 62: 10696–10705

    Article  Google Scholar 

  31. Luo C, Johnson S G, Joannopoulos J D, et al. All-angle negative refraction without negative effective index. Phys Rev B, 2002, 65: 201104(R)

    Article  Google Scholar 

  32. Li Z Y, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Phys Rev B, 2003, 68: 245110

    Article  Google Scholar 

  33. Luo C Y, Johnson S G, Joannopoulos J D, et al. Subwavelength imaging in photonic crystals. Phys Rev B, 2003, 68: 045115

    Article  Google Scholar 

  34. Foteinopoulou S, Soukoulis C M. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys Rev B, 2003, 67: 235107

    Article  Google Scholar 

  35. Wang X, Ren Z F, Kempa K. Unrestricted superlensing in a triangular two-diemnsional photonic crystal. Opt Express, 2004, 12: 2919–2924

    Article  Google Scholar 

  36. Ao X Y, He S L.Three-dimensional photonic crystal of negative refraction achieved by interference lithography. Opt Lett, 2004, 29: 2542–2544

    Article  Google Scholar 

  37. Cubukcu E, Aydin K, Ozbay E, et al. Negative refraction by photonic crystals. Nature, 2003, 423: 604–605

    Article  Google Scholar 

  38. Cubukcu E, Aydin K, Ozbay E, et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys Rev Lett, 2003, 91: 207401

    Article  Google Scholar 

  39. Parimi P V, Lu W T, Vodo P, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys Rev Lett, 2004, 92: 127401

    Article  Google Scholar 

  40. Parimi P V, Lu W T T, Vodo P, et al. Photonic crystals -imaging by flat lens using negative refraction. Nature, 2003, 426: 404–404

    Article  Google Scholar 

  41. Berrier A, Mulot M, Swillo M, et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys Rev Lett, 2004, 93: 073902

    Article  Google Scholar 

  42. Schonbrun E, Tinker M, Park W, et al. Negative refraction in a Si-polymer photonic crystal membrane. IEEE Photon Technol Lett, 2005, 17: 1196–1198

    Article  Google Scholar 

  43. Li L M, Zhang Z Q. Muitiple-scattering approach to finite-sized photonic band-gap materials. Phys Rev B, 1998, 58: 9587–9590

    Article  Google Scholar 

  44. Li Z Y, Ho K M. Light propagation through photonic crystal waveguide bends by eigenmode examinations. Phys Rev B, 2003, 68: 045201

    Article  Google Scholar 

  45. Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett, 1990, 65: 3152–3155

    Article  Google Scholar 

  46. Li Z Y, Wang J, Gu B Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. Phys Rev B, 1998, 58: 3721–3729

    Article  Google Scholar 

  47. Li Z Y, Gu B Y, Yang G Z. Large absolute band gap in 2d anisotropic photonic crystals. Phys Rev Lett, 1998, 81: 2574–2577

    Article  Google Scholar 

  48. Feng S, Li Z Y, Feng Z F, et al. Imaging properties of an elliptical-rod photonic-crystal slab lens. Phys Rev B, 2005, 72: 075101

    Article  Google Scholar 

  49. Feng S A, Li Z Y, Feng Z F, et al. Focusing properties of a rectangular-rod photonic-crystal slab. J Appl Phys, 2005, 98: 063102

    Article  Google Scholar 

  50. Ren K, Feng S, Feng Z F, et al. Imaging properties of triangular lattice photonic crystal at the lowest band. Phys Lett A, 2006, 348: 405–409

    Article  Google Scholar 

  51. Hu X H, Chan C T. Photonic crystals with silver nanowires as a near-infrared superlens. Appl Phys Lett, 2004, 85: 1520–1522

    Article  Google Scholar 

  52. Zhang X. Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals. Phys Rev B, 2004, 70: 195110

    Article  Google Scholar 

  53. Feng Z F, Zhang X D, Ren K, et al. Experimental demonstration of non-near-field image formed by negative refraction. Phys Rev B, 2006, 73: 075118

    Article  Google Scholar 

  54. Feng S A, Li Z Y, Feng Z F, et al. Engineering the imaging properties of a metallic photonic-crystal slab lens. Appl Phys Lett, 2006, 88: 031104

    Article  Google Scholar 

  55. Feng Z F, Zhang X D, Wang Y Q, et al. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Phys Rev Lett, 2005, 94: 247402

    Article  Google Scholar 

  56. Rotenberg E, Theis W, Horn K, et al. Quasicrystalline valence bands in decagonal alnico. Nature, 2000, 406: 602–605

    Article  Google Scholar 

  57. Ren C, Tian J, Feng S, et al. High resolution three-port filter in two dimensional photonic crystal slabs. Opt Express, 2006, 14: 10014–10020

    Article  Google Scholar 

  58. Tao H H, Liu R J, Li Z Y, et al. Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy. Phys Rev B, 2006, 74: 205111

    Article  Google Scholar 

  59. Liu Y Z, Liu R J, Zhou C Z, et al. Gamma-Mu waveguides in two-dimensionaltriangular-lattice photonic crystal slabs. Opt Express, 2008, 16: 21483–21491

    Article  Google Scholar 

  60. Liu Y Z, Liu R J, Feng S A, et al. Multichannel filters via Gamma-M and Gamma-K waveguide coupling in twodimensional triangular-lattice photonic crystal slabs. Appl Phys Lett, 2008, 93: 241107

    Article  Google Scholar 

  61. Gan L, Zhou C Z, Wang C, et al. Two-dimensional air-bridged silicon photonic crystal slab devices. Phys Status Solid A-Appl Mat Sci, 2010, 207: 2715–2725

    Article  Google Scholar 

  62. Li Z Y, Wang C, Gan L, Silicon photonic crystals toward optical integration. In: Passaro V M N, ed. Advances in photonic crystals. InTech, 2013. 297–340

    Google Scholar 

  63. Gan L, Liu Y Z, Li J Y, et al. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm. Opt Express, 2009, 17: 9962–9970

    Article  Google Scholar 

  64. Kosaka H, Kawashima T, Tomita A, et al. Self-collimating phenomena in photonic crystals. Appl Phys Lett, 1999, 74: 1212–1214

    Article  Google Scholar 

  65. Yu X F, Fan S H. Bends and splitters for self-collimated beams in photonic crystals. Appl Phys Lett, 2003, 83: 3251–3253

    Article  Google Scholar 

  66. Rakich P T, Dahlem M S, Tandon S, et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nat Mat, 2006, 5: 93–96

    Article  Google Scholar 

  67. Gan L, Qin F, Li Z Y. Broadband large-angle self-collimation in two-dimensional silicon photonic crystal. Opt Lett, 2012, 37: 2412–2414

    Article  Google Scholar 

  68. Ren K, Li Z Y, Ren X B, et al. Three-dimensional light focusing in inverse opal photonic crystals. Phys Rev B, 2007, 75: 115108

    Article  Google Scholar 

  69. Wijnhoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281: 802–804

    Article  Google Scholar 

  70. Subramania G, Constant K, Biswas R, et al. Optical photonic crystals fabricated from colloidal systems. Appl Phys Lett, 1999, 74: 3933–3935

    Article  Google Scholar 

  71. Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414: 289–293

    Article  Google Scholar 

  72. Ni P G, Dong P, Cheng B Y, et al. Synthetic SiO2 opals. Adv Mater, 2001, 13: 437–441

    Article  Google Scholar 

  73. Ni P G, Cheng B Y, Zhang D Z. Inverse opal with an ultraviolet photonic gap. Appl Phys Lett, 2002, 80: 1879–1881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z. Anomalous transport of light in photonic crystal. Sci. China Inf. Sci. 56, 1–21 (2013). https://doi.org/10.1007/s11432-013-5040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5040-1

Keywords

Navigation