Skip to main content
Log in

Synchronization of multiple autonomous underwater vehicles without velocity measurements

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we investigate the synchronization control of multiple autonomous underwater vehicles (AUVs), considering both state feedback and output feedback cases. Treating multiple AUVs as a graph, we define the tracking error of each AUV with both its own tracking error and the relative position errors with respect to its neighbors taken into account. Lyapunov analysis is used to derive the control law for each AUV. For the output feedback case, a passive filter is used to compensate for the unknown relative velocity errors among AUVs, and an observer is employed to estimate the velocity of the AUV itself. Rigid mathematical proof is provided for the proposed algorithms for both state feedback and output feedback cases. Simulations are provided to demonstrate the effectiveness of the proposed approach. It is shown that, the synchronization error is smaller in the case of considering the relative errors between AUVs than in the case of considering the tracking error of the single AUV only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fossen T I. Guidance and Control of Ocean Vehicles. New York: Wiley Interscience, 1994

    Google Scholar 

  2. Skjetne R, Moi S, Fossen T. Nonlinear formation control of marine craft. In: Proceedings of IEEE Conference on Decision and Control, Las Vegas, 2002. 1699–1704

  3. Stilwell D J, Bishop B E. Platoons of underwater vehicles. IEEE Contr System Mag, 2000, 20: 45–52

    Article  Google Scholar 

  4. Fiorelli E, Leonard N, Bhatta P, et al. Multi-AUV control and adaptive sampling in Monterey Bay. IEEE J Oceanic Engin, 2006, 31: 935–948

    Article  Google Scholar 

  5. Li Z, Tao P Y, Ge S S, et al. Robust adaptive control of cooperating mobile manipulators with relative motion. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39: 103–116

    Article  MATH  Google Scholar 

  6. Li Z, Li J, Kang Y. Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatic, 2010, 40: 2028–2034

    Article  MathSciNet  Google Scholar 

  7. Wang N, Zhang TW, Xu J Q. Formation control for networked spacecraft in deep space: with or without communication delays and with switching topology. Sci China Inf Sci, 2011, 54: 469–481

    Article  MathSciNet  Google Scholar 

  8. Cui R, Gao B, Guo J. Pareto-optimal coordination of multiple robots with safety guarantees. Auton Robots, 2012, 32: 189–205

    Article  Google Scholar 

  9. Ge S S, Fua C H. Queues and artificial potential trenches for multirobot formations. IEEE Trans Robot, 2004, 21: 646–656

    Article  Google Scholar 

  10. Cui R. Synchronized altitude tracking control of multiple unmanned helicopters. In: Proceedings of the 2010 American Control Conference, Baltimore, 2010. 4433–4438

  11. Ma H B. Decentralized adaptive synchronization of a stochastic discrete-time multiagent dynamic model. SIAM J Contr Optimiz, 2009, 48: 859–880

    Article  MATH  Google Scholar 

  12. Wu J, Shi Y. Consensus in multi-agent systems with random delays governed by a markov chain. Syst Contr Lett, 2011, 60: 863–870

    Article  MathSciNet  MATH  Google Scholar 

  13. Ren W. Multi-vehicle consensus with a time-varying reference state. Syst Contr Lett, 2007, 56: 474–483

    Article  MATH  Google Scholar 

  14. Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 2006, 51: 401–420

    Article  MathSciNet  Google Scholar 

  15. Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. Int J Contr, 2009, 82: 2137–2149

    Article  MATH  Google Scholar 

  16. Aguiar P, Pascoal A M. Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. Int J Contr, 2007, 80: 1092–1108

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang C. Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neur Netw, 2008, 19: 1873–1886

    Article  Google Scholar 

  18. Yang C, Ge S S, Lee T H. Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions. Automat, 2009, 45: 270–276

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen M. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automat, 2011, 47: 452–465

    Article  MATH  Google Scholar 

  20. Chen M, Ge S S, How B. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neur Netw, 2011, 21: 796–812

    Article  Google Scholar 

  21. Edwards D, Bean T, Odell D, et al. A leader-follower algorithm for multiple AUV formations. In: Proceedings of IEEE/OES Autonomous Underwater Vehicles, Sebasco Estates, 2004. 40–46

  22. Cui R, Ge S S, How V E B, et al. Leader-follower formation control of underactuated autonomous underwater vehicles. Ocean Engin, 2010, 37: 1491–1502

    Article  Google Scholar 

  23. Ihle I A F, Jouffroy J, Fossen T I. Formation control of marine surface craft: a Lagrangian approach. IEEE J Ocean Engin, 2006, 31: 922–934

    Article  Google Scholar 

  24. Rodriguez-Angeles A, Nijmeijer H. Mutual synchronization of robots via estimated state feedback: A cooperative approach. IEEE Trans Contr Syst Tech, 2004, 12: 542–554

    Article  Google Scholar 

  25. Lizarralde F, Wen J T. Attitude control without angular velocity measurement: A passivity approach. IEEE Trans Autom Contr, 2002, 41: 468–472

    Article  MathSciNet  Google Scholar 

  26. Dong W, Guo Y. Global time-varying stabilization of underactuated surface vessel. IEEE Trans Autom Contr, 2005, 50: 859–864

    Article  MathSciNet  Google Scholar 

  27. Li Z, Cao X, Ding N. Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans Fuzzy Syst, 2011, 19: 745–757.

    Article  Google Scholar 

  28. Shi Y, Fang H, Yan M. Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs. Int J Robust Nonlin Contr, 2009, 19: 1976–1992

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi Y, Yu B. Robust mixed H 2/H control of networked control systems with random time delays in both forward and backward communication links. Automatic, 2011, 47: 754–760

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongXin Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, R., Yan, W. & Xu, D. Synchronization of multiple autonomous underwater vehicles without velocity measurements. Sci. China Inf. Sci. 55, 1693–1703 (2012). https://doi.org/10.1007/s11432-012-4579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4579-6

Keywords

Navigation